
Kafka Streams and
Protobuf

2017-02-04, Brussels, Belgium
Clemens Valiente

Email: clemens.valiente@trivago.com
 de.linkedin.com/in/clemensvaliente

Senior Data Engineer
trivago Düsseldorf

Originally a mathematician
Studied at Uni Erlangen
At trivago for 5 years

Clemens Valiente

Agenda

1. Kafka – quick introduction

2. Kafka Streams Concepts

3. Google Protocol Buffers

4. Stream processing with Kafka Streams and protobuf

3

4

Apache Kafka (very quick intro)

● Distributed streaming
platform

● Fault tolerant, replicated

● Consumer group
responsible for rebalancing
and scaling

https://kafka.apache.org/intro

5

Apache Kafka Streams

● Small library instead of huge
framework, no further external
dependencies

● Simple java application: build fatJar
and run (on yarn, Mesos, Docker,
Kubernetes...)

● Uses consumer group logic for
elastic scaling, fault tolerance and
distributing workload

● Ideal for a microservice architecture

http://docs.confluent.io/3.1.2/streams/architecture.html#streams-architecture

6

Apache Kafka Streams – KTables and KStreams

● Streams are infinite event logs

● Tables are finite with
updates/deletes/inserts on the
key

● Both can be represented as a
kafka topic (table changelog)

● Join via key (e.g. customer event
stream with customer table)

http://docs.confluent.io/3.1.2/streams/architecture.html#streams-architecture

7

Apache Kafka Streams – local and global state

● State of a stream task is stored
locally in a statestore, e.g. RocksDB
(by default)

● Writes to this statestore are also
replicated to a Kafka topic as a
changelog

● On rebalancing or recovery, new
tasks rebuild the state from the
Kafka topic

● You can even query the local state

http://docs.confluent.io/3.1.2/streams/architecture.html#streams-architecture

Kafka and Avro

● Several parts of the
Confluent platform and Kafka
assume you are using avro:

● Kafka Connect

● Schema Registry

=> Natural choice

● You always need to have the
correct schema in the
correct version to be able to
read your messages reliably

● If you don’t have a schema,
all your data is just byte
garbage

Google Protocol Buffers

● Similar to Avro in a lot of its
features
– Binary encoded

– Defined schema

– Support for lots of languages

● But: Can also read messages
with different schema and no
schema at all!

Person.proto

message Person {
 required string name = 1;
 required int32 id = 2;
 optional string email = 3;

 enum PhoneType {
 MOBILE = 0;
 HOME = 1;
 WORK = 2;
 }

 message PhoneNumber {
 required string number = 1;
 optional PhoneType type = 2 [default = HOME];
 }

 repeated PhoneNumber phones = 4;
}

 https://developers.google.com/protocol-buffers/docs/javatutorial

Example Person

Decoded Message with Schema
name: "John Doe"
id: 1234
email: "jdoe@example.com"
phones {
 number: "555-4321"
 type: HOME
}

Decoded Message without Schema
1: "John Doe"
2: 1234
3: "jdoe@example.com"
4 {
 1: "555-4321"
 2: 1
}

Decoded Message with old Schema
name: "John Doe"
id: 1234
phones {
 number: "555-4321"
 type: HOME
}
3: "jdoe@example.com"

The magic of unknown fields

If you build a new message from an existing one, all unknown fields
will be copied over and included in the new message

this.unknownFields = builder.getUnknownFields();

Even if your application doesn’t have the correct schema, it will not
break the original content

High level overview

Message
Producers, e.g.

Logs,
Databases,

APIs,
External
sources

Protobuf Definitions

Stream processors

Consumers, e.g
Databases,

Reports & Dashboards,
Applications,

Machine learning,
Big Data storage

Tying it all together

KStream
Customer

Events

KTable
Product
Table

KTable
Customer

Table

message Event {
 required int64 timestamp = 1;
 required string session_id = 2;
 required string type = 3;
 optional int32 customer_id = 4;
 optional int32 product_id = 5;
}

message Customer {
 required int32 customer_id = 1;
 optional string name = 2;
 optional string email = 3;
}

message Product {
 required int32 product_id = 1;
 optional string name = 2;
 optional float price = 3;
}

Kafka Streams
app joining these
three topics

message RichEvent {
 required Event event
= 1;
 optional Customer
customer = 2;
 optional Product
product = 3;
}

KStream
RichEvents

Tying it all together

KStream
RichEvents

message RichEvent {
 required Event event = 1;
 optional Customer
customer = 2;
 optional Product product =
3;
}

Kafka Streams
app collecting
into sessions

message Session {
 repeated RichEvents
richevents = 1;
}

What if …?

Message
Producers, e.g.

Logs,
Databases,

APIs,
External
sources

Protobuf Definitions

Stream processors

Consumers, e.g
Databases,

Reports & Dashboards,
Applications,

Machine learning,
Big Data storage

Adding a new field

KStream
Customer

Events

KTable
Product
Table

KTable
Customer

Table

message Event {
 required int64 timestamp = 1;
 required string session_id = 2;
 required string type = 3;
 optional int32 customer_id = 4;
 optional int32 product_id = 5;
}

message Customer {
 required int32 customer_id = 1;
 optional string name = 2;
 optional string email = 3;
}

message Product {
 required int32 product_id = 1;
 optional string name = 2;
 optional float price = 3;
 optional string colour = 4;
}

Kafka Streams
app joining these
three topics

message RichEvents {
 required Event event
= 1;
 optional Customer
customer = 2;
 optional Product
product = 3;
}

Product now
contains an
unknown field

Adding a new field

KStream
RichEvents

message RichEvent {
 required Event event = 1;
 optional Customer
customer = 2;
 optional Product product =
3;
}

Kafka Streams
app collecting
into sessions

message Session {
 repeated RichEvent
richevent = 1;
}

Contains Products
with unknown Fields

Removing a field

KStream
Customer

Events

KTable
Product
Table

KTable
Customer

Table

message Event {
 required int64 timestamp = 1;
 required string session_id = 2;
 required string type = 3;
 optional int32 customer_id = 4;
 optional int32 product_id = 5;
}

message Customer {
 required int32 customer_id = 1;
 optional string name = 2;
 optional string email = 3;
}

message Product {
 required int32 product_id = 1;
 optional string name = 2;
 optional float price = 3;
}

Kafka Streams
app joining these
three topics

message RichEvent {
 required Event event
= 1;
 optional Customer
customer = 2;
 optional Product
product = 3;
}

Product now
contains a null
price

Summary

● Decouples development processes

– Teams can move at their own speed

– No strict alignment for releases necessary

● “hands-off” data engineering: Only actual producers and consumers need to
align on new information, pipeline in between runs uninterrupted

Downsides of google protobuf

● No dynamic schema generation

– Make sure to stick to your field ids and don’t reuse them!

– More consideration needed and “handcrafting” schemas

● Less implementations than avro around Kafka & Hadoop

● Also less users

● Google wants to remove unknown fields in Protobuf 3

– https://github.com/google/protobuf/issues/272

● Slightly bigger than avro

Email: clemens.valiente@trivago.com
 de.linkedin.com/in/clemensvaliente

Senior Data Engineer
trivago Düsseldorf

Originally a mathematician
Studied at Uni Erlangen
At trivago for 5 years

Clemens Valiente

Thank you!

Questions
and
comments?

● Thanks to Jan Filipiak for his brainpower behind most
projects, giving me the opportunity to present them

● Additional resources (trivago Open Source):

● https://github.com/trivago/gollum A n:m message
multiplexer written in Go

● https://github.com/trivago/triava TriavaCache, JSR107
compliant cache

https://github.com/trivago/gollum
https://github.com/trivago/triava

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

