
Challenges updating your code

to work with Java 9 Jigsaw

Uwe Schindler
Apache Lucene PMC & Apache Software Foundation Member

uschindler@apache.org

https://www.thetaphi.de, http://blog.thetaphi.de

@ThetaPh1

SD DataSolutions GmbH, Wätjenstr. 49, 28213 Bremen, Germany

Tel: +49 421 40889785-0, https://www.sd-datasolutions.de

mailto:uschindler@apache.org
https://www.thetaphi.de/
http://blog.thetaphi.de/
http://www.sd-datasolutions.de/

What is this talk about?

• Migrating your current project so it works

with Java 9 (Jigsaw)

• Common pitfalls with Java 7 / Java 8

code, that just used to work

• Not an introduction to the module system!

• It does not show you how to “convert your

project” to be a module

What changed in Jigsaw?
(module system)

• Strong encapsulation:

– Code only sees classes from packages

exported to your code

– Private APIs are private – especially those in

the JDK!

What changed in Jigsaw?
(module system)

• Strong encapsulation:

– Code only sees classes from packages

exported to your code

– Private APIs are private – especially those in

the JDK!

• Your code behaves as if it will be executed

with a security manager! 

COMPILE TIME PROBLEMS

Examples

Direct use of

invisible/removed APIs

• sun.misc.BASE64Encoder / -Decoder

• sun.misc.Unsafe

• com.sun.javafx.*

(http://openjdk.java.net/jeps/253)

http://openjdk.java.net/jeps/253

Direct use of

invisible/removed APIs

• sun.misc.BASE64Encoder / -Decoder

• sun.misc.Unsafe

• com.sun.javafx.*

(http://openjdk.java.net/jeps/253)

If compiled with older Java version it will
result in IllegalAccessError on Java 9

http://openjdk.java.net/jeps/253

Solution

Solution

Solution

Solution

• Scan your code with jdeps tool

– Maven plugin available

– Works only with Java 8+

Solution

• Scan your code with jdeps tool

– Maven plugin available

– Works only with Java 8+

• Alternative: ForbiddenAPIs

– https://github.com/policeman-tools/forbidden-apis

– jdk-non-portable or jdk-internal-*

signatures

– Maven/Gradle/Ant plugin for Java 6+

https://github.com/policeman-tools/forbidden-apis

Solution

• Scan your code with jdeps tool

– Maven plugin available

– Works only with Java 8+

• Alternative: ForbiddenAPIs

– https://github.com/policeman-tools/forbidden-apis

– jdk-non-portable or jdk-internal-*

signatures

– Maven/Gradle/Ant plugin for Java 6+

https://github.com/policeman-tools/forbidden-apis

Solution

• Scan your code with jdeps tool

– Maven plugin available

– Works only with Java 8+

• Alternative: ForbiddenAPIs

– https://github.com/policeman-tools/forbidden-apis

– jdk-non-portable or jdk-internal-*

signatures

– Maven/Gradle/Ant plugin for Java 6+

• Won’t help if reflection was used!

https://github.com/policeman-tools/forbidden-apis

REFLECTION

Examples

Reflection “hacks”

• Clever people use reflection to access

private / internal Java APIs:

Reflection “hacks”

• Clever people use reflection to access

private / internal Java APIs:

– No compile-time dependency on Oracle JDK

– Sometimes needed to access private
members, e.g. “sun.misc.Unsafe” instance

Reflection “hacks”

Reflection “hacks”

• Downside: Static

analysis can’t help

Reflection “hacks”

• Downside: Static

analysis can’t help

• Much worse: No

correct error handling

(if APIs are

missing/incompatible)!

Brokeness around

the world

• People use setAccessible()

everywhere to break into internal APIs

Brokeness around

the world

• People use setAccessible()

everywhere to break into internal APIs

– Almost no library does this correct

Brokeness around

the world

• People use setAccessible()

everywhere to break into internal APIs

– Almost no library does this correct

• People don’t wrap with
AccessController.doPrivileged()

Brokeness around

the world

Brokeness around

the world

• People forget to add correct try/catch:

Brokeness around

the world

• People forget to add correct try/catch:

– e.printStackTrace()

– throw new RuntimeException(e)

Brokeness around

the world

• People forget to add correct try/catch:

– e.printStackTrace()

– throw new RuntimeException(e)

– …inside static initializers!

Brokeness around

the world

• People forget to add correct try/catch:

– e.printStackTrace()

– throw new RuntimeException(e)

– …inside static initializers!

• No alternative solution:

Brokeness around

the world

• People forget to add correct try/catch:

– e.printStackTrace()

– throw new RuntimeException(e)

– …inside static initializers!

• No alternative solution:

– static initializer breaks

– NoClassDefFoundError forever!

What’s wrong with Jigsaw?

#ReflectiveAccessToNonExportedTypes

#AwkwardStrongEncapsulation

• New since build 148 of Java 9

• Prevents reflective access to any class

from Java runtime

What’s wrong with Jigsaw?

#ReflectiveAccessToNonExportedTypes

#AwkwardStrongEncapsulation

• New since build 148 of Java 9

• Prevents reflective access to any class

from Java runtime

#AwkwardStrongEncapsulation: A non-public

element of an exported package can still be

accessed via the
AccessibleObject::setAccessible method

of the core reflection API. The only way to strongly

encapsulate such an element is to move it to a

non-exported package. This makes it awkward, at

best, to encapsulate the internals of a package that

defines a public API.

What’s wrong with Jigsaw?

#ReflectiveAccessToNonExportedTypes

#AwkwardStrongEncapsulation

• New since build 148 of Java 9

• Prevents reflective access to any class

from Java runtime

What does no longer work?

What does no longer work?

•Class.forName()

– on non-exported packages

What does no longer work?

•Class.forName()

– on non-exported packages

•AccessibleObject

.setAccessible(true)

– on any public runtime class

What does no longer work?

•Class.forName()

– on non-exported packages

•AccessibleObject

.setAccessible(true)

– on any public runtime class

• Some exceptions:

–sun.misc.Unsafe

Problems

• No tool to detect reflective access to

private APIs with earlier Java versions

during testing/compilation

• Forbidden-APIs can disallow
AccessibleObject::setAccessible

SOLUTIONS

What can I do?

Run tests with
SecurityManager!

(Apache Lucene, Apache Solr,

Elasticsearch)

Howto: Important patterns!

• Add fallbacks for private APIs (try…catch

in static initializers)

• Catch SecurityException AND

RuntimeException

Howto: Important patterns!

• Add fallbacks for private APIs (try…catch

in static initializers)

• Catch SecurityException AND

RuntimeException

– InaccessibleObjectException extends

RuntimeException 

Howto: Important patterns!

• Don’t fail in static initializers if you have

no workaround!

– Save error details while trying to initialize your

private API hacks (Unsafe & Co.)

– Use AccessController#doPrivileged

– If consumer of your library calls a method using

the hack, throw useful exception

Early binding using

MethodHandles

• MethodHandles are bound early

– like javac is compiling and type-checking a

method call

• MethodHandles can be used to add

“programming logic” with if/then/else

– MethodHandles.guardWithTest() & Co.

• No linkage errors possible at call time

APACHE LUCENE’S

MAPPEDBYTEBUFFER

UNMAPPING

EXAMPLE

https://issues.apache.org/jira/browse/LUCENE-6989

https://bugs.openjdk.java.net/browse/JDK-4724038

https://issues.apache.org/jira/browse/LUCENE-6989
https://bugs.openjdk.java.net/browse/JDK-4724038

Thank You!

