Understanding JESD204B
High-speed inter-device data transfers for SDR

Lars-Peter Clausen
Introduction
JESD204 Standard

- Designed as high-speed serial data link between converter (ADC, DAC) and logic device
 - Up to 32 lanes per link
 - Up to 12.5 Gbps (raw) per lane
- Describes data mapping and framing
- Multi-chip synchronization
- Deterministic latency
Timeline

- **2006: JESD204**
 - 1 lane, 3.125Gbps
- **2008: JESD204A**
 - Multi-lane, 3.125 Gbps
- **2012: JESD204B**
 - Multi-lane, 12.5 Gbps
 - Deterministic latency
 - Subclass 0, 1, 2
 - More flexible clocking scheme
Motivation
Increasing Data Demands

- Increasing channel bandwidth
 - 802.11ac: 160 MHz, LTE: 5 * 20MHz
 - > 1GHz at higher bands
- Diversity transmitter/receiver
 - MIMO, Multi-user
- Direct RF
 - Move parts of the signal chain into the digital domain
 - ADC/DAC directly capture/synthesize RF data
Replacing Parallel Buses

- To increase throughput on a parallel bus either increase
 - Number of pins
 - Clock rate
- More pins:
 - Routing issues
 - Power concerns
Jitter on Parallel Buses

- A parallel bus needs to capture all data lines at the same time.
- Complicated by skew and jitter caused by manufacturing and environmental differences:
 - Process, Voltage, Temperature (PVT)
Architecture
Layers

- **Application**
 - Application specific processing

- **Transport**
 - Sample framing
 - Lane mapping

- **Link**
 - Scrambling
 - Character replacement
 - 8b/10b encoding

- **Physical**
 - High-speed SerDes
 - Clock recovery
 - Signal shaping
Converter Device

- Does either A2D or D2A conversion
- Contains one or more converters
 - All synchronous
- Modern converter devices often include digital processing
Logic Device

- Implements digital signal processing
- Often implemented in a FPGA
- One logic device can interface multiple synchronous converter devices
 - Multi-point link
- Link consists of multiple independent lanes
- Differential current-mode-logic (CML) signaling
- 8b/10b data encoding
- Embedded clock
- Data scrambling
 - Optional, but highly recommended
Parameters are used to describe the link and lane configuration

<table>
<thead>
<tr>
<th>Parameter*</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DID</td>
<td>Device identification</td>
</tr>
<tr>
<td>LID</td>
<td>Lane identification</td>
</tr>
<tr>
<td>F</td>
<td>Octets per frame</td>
</tr>
<tr>
<td>K</td>
<td>Frames per multi-frame</td>
</tr>
<tr>
<td>L</td>
<td>Number of lanes per converter device</td>
</tr>
<tr>
<td>N</td>
<td>Converter resolution</td>
</tr>
<tr>
<td>N'</td>
<td>Number of bits per sample (recommended to be multiple of 4)</td>
</tr>
<tr>
<td>SCR</td>
<td>Scrambling enabled/disabled</td>
</tr>
<tr>
<td>HD</td>
<td>High-density (Single sample split over multiple lanes)</td>
</tr>
<tr>
<td>JESDV</td>
<td>JESD204 Version (JESD204A, JESD204B)</td>
</tr>
<tr>
<td>SUBCLASSV</td>
<td>JESD204B Subclass (0, 1, 2)</td>
</tr>
</tbody>
</table>

* Table is a excerpt of the most important parameters
Deterministic Latency
Latency

• Propagating data over the link takes time
 – Part of the latency is fixed
 – Part of the latency depends on manufacturing and environmental conditions (PVT)

• Some systems/algorithms are latency sensitive
 – Closed-loop-control systems
 – Radar
Deterministic Latency

RX de-asserts SYNC TX starts sending data Release opportunity

LMFC

- L_0
- L_1
- L_2
Deterministic Latency

• End-to-End (JESD link) Latency is consistent (and deterministic) across PVT variations and from power-on to power-on

• Non-deterministic latency components are not removed, but compensated
 – Data is buffered before released to the application layer
 – Release happens at deterministic release opportunities

• Supported by JESD204B subclass 1 and 2
Data Integrity
Error Detection

- 8b10b encoding allows detection of simple errors
 - Disparity and not-in-table errors
- Frames with errors should be replaced with the previous frame
 - Most implementations assert an error flag
- No additional data protection
 - No CRC, FEC, etc.
Data Integrity

- Raw payload data transported over JESD204B link inherently noisy
 - Upper layers implement forward-error-correction and retransmission
- Link bit-error-rate just needs to be good enough
Alignment Monitoring

- Under certain conditions the last character in a frame/multi-frame is replaced by an alignment control character
 - These control characters will not appear anywhere else in the datastream
 - Allows detection of frame or multi-frame misalignment
Software Support
Current Situation

• No common infrastructure

• System integrator has to...
 – research constraints of all system components
 – find one configuration that works for all
 – look-up magic register values for this configuration

• Application developer has to work with provided fixed configuration
libjesd204 (WIP)

- Built-in database of converter device, logic device and clockchip constraints
 - Programmatic rules establish relationships
 - E.g. $X = Y / 4$
- System integrator only needs to specify board constraints
 - E.g. number of connected lanes
- Application developer can dynamically change configuration at runtime
 - E.g. set samplerate to 500MSPS
- Configuration automatically mapped to register settings
Questions and Answers
Additional References

- **Analog Devices JESD204B Survival Guide**

- **M-Labs Open Source JESD204B HDL**
 - https://github.com/m-labs/jesd204b

- **FPGA Vendor JESD204B information:**
 - https://www.altera.com/jesd204b
Thanks
Bonus Slides
Available soon

https://github.com/analogdevicessinc/hdl/tree/dev/library/jesd204
Framing

- Samples are mapped into nibble groups
 - Control bits and padding are added
- Nibble groups are mapped to octets
- Octets are processed per lane
Local Multi-Frame Clock

- Each JESD204B device generates an internal local multi-frame clock (LMFC)
 - 1-32 frames long
- Beginning of the LMFC is synchronized externally
 - Subclass 1: SYSREF, Subclass 2: SYNC
- Internal events are synchronized to the LMFC
Link Synchronization

- Receiver asserts SYNC
- Transmitter repeatedly sends /K/ character
- Receiver performs CDC and character alignment
- Receiver de-asserts SYNC
- Transmitter starts sending ILAS and data
Initial Lane Alignment Sequence

- After link synchronization the transmitter sends the (Initial Lane Alignment Sequence) ILAS
- Allows verification of link alignment
 - Special control character at the start and end of ILAS multi-frame
- Second ILAS multi-frame contains link configuration parameters
 - Allows to verify configuration and lane mapping
SYSREF

- SYSREF is used as a synchronization signal
 - In subclass 1
- Source synchronous to the device clock
- Three modes
 - Periodic, gapped periodic, one-shot
- LMFC is aligned to SYSREF
Initial Lane Alignment Sequence

• After link synchronization the transmitter sends the (Initial Lane Alignment Sequence) ILAS

• Allows verification of link alignment
 – Special control character at the start and end of ILAS multi-frame

• Second ILAS multi-frame contains link configuration parameters
 – Allows to verify configuration and lane mapping