
1Prototyping IoT with Yocto

Prototyping IoT with

Pierre Ficheux (pierre.ficheux@smile.fr)

02/2017

2Prototyping IoT with Yocto

$ whoami

● French embedded Linux developer, writer and teacher
● CTO @ Smile-ECS (Embedded & Connected Systems)

3Prototyping IoT with Yocto

2 kinds of objects

● Basic one such as sensor
– MCU/µC (no MMU)

– Software is « bare metal » or light OS such as Contiki
or RIOT

● Advanced one (computer like)
– CPU with MMU (32 bits or more)

– OS such as Linux / Tizen / Android

Parrot flower power (µC)

Eccelenza touch (Yocto)
“Tesla car is a connected computer on wheels !”

4Prototyping IoT with Yocto

Linux and IoT

● Not “the” universal OS for IoT but...
● According to “IoT developer Survey 2016”

– 73 % Linux

– 23 % « bare metal » (no OS)

– 12 % FreeRTOS

– 6 % Contiki

● Don't forget there are and

– Distribution (Debian, Ubuntu, etc.)

– « Build system » (Yocto, Buildroot, etc.)

● Today most of objects are computers

5Prototyping IoT with Yocto

Linux distribution

● Most of developers use Linux distribution
● Well known, comfortable and portable environment but

– High footprint (Go)

– boot time (close to 1 mn)

– Development oriented → host but not a target

– No traceability (binaries)

– Limited target support (x86, ARM)

– Not for IoT at all !!

● Most distributions runs on ARM → easy to take a wrong
way

● Alternate – and right - way is « build system » !

6Prototyping IoT with Yocto

What is a « build system » ?

● Not a distribution, just a tool to build one from sources
● Does not provide sources but “recipes”
● Provides binaries file to be installed on the target

– Bootloader

– Linux kernel and DT blobs

– Root-filesystem image + applications

● Provides additional information
– Licensing

– Dependencies graphs

● Much better footprint, boot time, etc.
● Android uses a dedicated – but open source - build

systems

7Prototyping IoT with Yocto

Most famous build systems

● Yocto/OpenEmbedded
– Based on “BitBake” (Python)

– Very powerful, not that easy to learn

– Text oriented

● Buildroot
– Based on standard GNU Make

– Started as an internal tool for uClibc

– Static approach (no packages)

● OpenWrt
– Modified Buildroot

– Packaging support

– Used for WeIO (IoT device)

8Prototyping IoT with Yocto

Buildroot

● Formerly internal tool for uClibc
● One version every 3 months since 2009.02
● Kernel like graphical configurator
● Fast and easy to use
● Result is not a distribution but a “Linux firmware”

9Prototyping IoT with Yocto

OpenEmbedded

● A “cross compilation framework”
● Started Chris Larson, Michael Lauer et Holger Schuring

for “OpenZaurus” (2002)
● Zaurus (SHARP) was the “first” Linux/Qt PDA

10Prototyping IoT with Yocto

OE principles

● Recipe is a .bb (for BitBake) file for every component
(from “Hello World” to whole distribution)

● OE uses classes (.bbclass), headers (.inc) and
configuration files (.conf)

● You can inherit from class with inherit
● “Deriving” a recipe is VERY useful → .bbappend
● Files are organized as “layers” → meta-*
● OE data flow is based on packages (RPM, IPK, DEB)
● Package management on target is optional

11Prototyping IoT with Yocto

Yocto / OE

● Yocto (symbol y) is a unit prefix in the metric system
denoting a factor of 10-24

● Yocto project was started in 2010 by Linux foundation
● Sub-projects integration (OE, BitBake, Poky, etc.)
● Currently most of embedded companies and hardware

makers are members (Intel, Montavista, NXP, TI, etc.)
● Richard Purdie (Linux Foundation fellow) is the

architect
● Most of Linux BSP are provided as OE layers !

12Prototyping IoT with Yocto

Yocto / OE workflow

13Prototyping IoT with Yocto

Yocto / OE layers

IoT layer

14Prototyping IoT with Yocto

Yocto/Poky « in a nutshell »

● Installing Poky and BSP
$ git clone -b krogoth git://git.yoctoproject.org/poky

$ cd poky

$ git clone git://git.yoctoproject.org/meta-raspberrypi

● Creating working directory
$ source oe-init-build-env rpi-build

● Adding BSP layer to conf/bblayers.conf
$ bitbake-layers add-layer meta-raspberrypi

● Adding target name to conf/local.conf
MACHINE = "raspberrypi"

● Creating minimal image
$ bitbake core-image-minimal

● Testing on SD card
$ sudo dd if=<path>/core-image-minimal-raspberrypi.rpi-sdimg
of=/dev/sdb

15Prototyping IoT with Yocto

Use case 1 : IoT sensor

● Building a demo sensor for Smile
– Raspberry Pi (zero)

– I²C temperature/pressure sensor (MPL115A2)

– Wi-Fi (USB)

– HTTP protocol

16Prototyping IoT with Yocto

Demonstrator global architecture

sensor

17Prototyping IoT with Yocto

Building distribution

● Starting from smaller distro « core-image-minimal »
● Adding options and new recipes

– Package management

– Standard or “derivated” recipes

– New recipes (I²C sensor control)

● Put everything in a new layer → meta-iot
$ yocto-layer create iot

● Updating local.conf (for test only)
● Creating a new distro recipe → « rpi-iot-image »

18Prototyping IoT with Yocto

Using .bbappend (derivation)

● One recipe (.bb) is defined in layer “A”
● We update recipe in a .bbappend located in layer “B”
● Currently

– Network configuration (Wi-Fi + HTTPd)

– I²C activation in config.txt

– Autoload of i2c-dev module

19Prototyping IoT with Yocto

Wi-Fi + HTTPd

● Wi-Fi adapter is supported → wlan0
● We need some additional packages (Wi-Fi management +

HTTP server=
IMAGE_INSTALL_append += "iw wpa_supplicant lighttpd"

● Updating /etc/network/interfaces for wlan0
automatic configuration

● WPA authentication (manual procedure for test)
wpa_passphrase <ESSID> <password> > /etc/wpa_supplicant.conf

ifdown wlan0

ifup wlan0

20Prototyping IoT with Yocto

Sensor + I²C

● Updating config.txt
dtparam=i2c_arm=on

→ do_deploy_append()
● Adding packages to local.conf

IMAGE_INSTALL_append += "i2c-tools kernel-modules"

● Loading I²C support
KERNEL_MODULE_AUTOLOAD += "i2c-dev"

→ Kernel .bbappend
● New recipe for MPL115A2 control

– Adapting original program (C, based on WiringPi)

– Starting a “service”, reading sensor every 20 secs
→ using update-rc.d class

21Prototyping IoT with Yocto

NTP support

● No RTC on Raspberry Pi
● NTP recipe provided by meta-openembedded layer

$ cd poky

$ git clone git://git.openembedded.org/meta-openembedded

$ git checkout <yocto-branch>

$ bitbake-layers add-layer ../meta-openembedded/meta-oe

$ bitbake-layers add-layer ../meta-openembedded/meta-python

$ bitbake-layers add-layer ../meta-openembedded/meta-networking

$ bitbake ntp tzdata

● Configuring timezone
rm -f /etc/localtime

ln -s /usr/share/zoneinfo/Europe/Paris /etc/localtime

cat /etc/default/ntpdate

...

NTPSERVERS="pool.ntp.org"

22Prototyping IoT with Yocto

Updading target

● SMART included by package management
● Creating packages index

$ bitbake package-index

● Creating HTTP channels on the target
smart channel --add <channel> baseurl=http://<pkg-dir>

smart update

smart install ntpdate tzdata

23Prototyping IoT with Yocto

Use case 2 : Border router (N. Aguirre)

● More complex demonstration based on sensorTag (TI)
● Raspberry Pi (Yocto 2.1 based) as “border router”

24Prototyping IoT with Yocto

SensorTag

● Cortex M3 (48MHz, 128KB flash, 8KB RAM)
● 512KB external flash for OTA and/or storage
● Low-power (10 mA active, 100 uA sleeping)
● Radio802.15.4 + Bluetooth Low Energy (BLE)
● $ 30 from TI website

25Prototyping IoT with Yocto

Raspberry Pi + 6LBR

● 6LBR est a board router software (between IoT/sensors
world and Internet world)

● Get data from SensorTags (6LoWPAN)
● Send data to the “cloud”
● MQTT broker
● Time Series (Influxdb) database
● MQTT / database connector (Telegraf)
● Web management and display (Grafana)

26Prototyping IoT with Yocto

Grafana display

27Prototyping IoT with Yocto

Références

● http://elinux.org/Build_Systems

● https://www.yoctoproject.org/

● http://buildroot.uclibc.org

● http://iot.ieee.org/images/files/pdf/iot-developer-survey-2016-report-final.pdf

● https://openwrt.org

● http://eccellenzatouchvki.com

● http://www.parrot.com/fr/produits/flower-power

● https://www.yoctoproject.org/ecosystem/iot

● http://we-io.net/hardware

● https://github.com/nodesign/weioBoard

● https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/README.md

● http://www.ti.com/ww/en/wireless_connectivity/sensortag2015

http://elinux.org/Build_Systems
https://www.yoctoproject.org/
http://buildroot.uclibc.org/
http://iot.ieee.org/images/files/pdf/iot-developer-survey-2016-report-final.pdf
https://openwrt.org/
http://eccellenzatouchvki.com/
http://www.parrot.com/fr/produits/flower-power
https://www.yoctoproject.org/ecosystem/iot
http://we-io.net/hardware
https://github.com/nodesign/weioBoard
https://www.raspberrypi.org/documentation/hardware/raspberrypi/schematics/README.md
http://www.ti.com/ww/en/wireless_connectivity/sensortag2015

	Partie 5
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27

