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$ whoami

● French embedded Linux developer,  writer and teacher
● CTO @ Smile-ECS (Embedded & Connected Systems)
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2 kinds of objects

● Basic one such as sensor
– MCU/µC (no MMU)

– Software is « bare metal » or light OS such as Contiki 
or RIOT

● Advanced one (computer like)
– CPU with MMU (32 bits or more)

– OS such as Linux / Tizen / Android

Parrot flower power (µC)

Eccelenza touch (Yocto)
“Tesla car is a connected computer on wheels !”
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Linux and IoT

● Not “the” universal OS for IoT but...
● According to “IoT developer Survey 2016” 

– 73 % Linux

– 23 % « bare metal » (no OS)

– 12 % FreeRTOS

– 6 % Contiki

● Don't forget there are                 and 

– Distribution (Debian, Ubuntu, etc.)

– « Build system » (Yocto, Buildroot, etc.)

● Today most of objects are computers
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Linux distribution

● Most of developers use Linux distribution
● Well known, comfortable and portable environment but

– High footprint (Go)

– boot time (close to 1 mn)

– Development oriented → host but not a target 

– No traceability (binaries)

– Limited target support (x86, ARM)

– Not for IoT at all !!

● Most distributions runs on ARM → easy to take a wrong 
way

● Alternate – and right - way is « build system » ! 
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What is a « build system » ?

● Not a distribution, just a tool to build one from sources
● Does not provide sources  but “recipes” 
● Provides binaries file to be installed on the target

– Bootloader

– Linux kernel and DT blobs

– Root-filesystem image + applications

● Provides additional information
– Licensing

– Dependencies graphs

● Much better footprint, boot time, etc.
● Android uses a dedicated – but open source - build 

systems
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Most famous build systems

● Yocto/OpenEmbedded
– Based on “BitBake” (Python)

– Very powerful, not that easy to learn

– Text oriented

● Buildroot
– Based on standard GNU Make

– Started as an internal tool for uClibc

– Static approach (no packages)

● OpenWrt
– Modified Buildroot

– Packaging support

– Used for WeIO (IoT device)



8Prototyping IoT with Yocto

Buildroot

● Formerly internal tool for uClibc
● One version every  3 months since 2009.02
● Kernel like graphical configurator
● Fast and easy to use
● Result is not a distribution but a “Linux firmware”
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OpenEmbedded

● A “cross compilation framework”
● Started Chris Larson, Michael Lauer et Holger Schuring 

for “OpenZaurus” (2002)
● Zaurus (SHARP) was the “first” Linux/Qt PDA 
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OE principles

● Recipe is a .bb (for BitBake) file for every component 
(from “Hello World” to whole distribution)

● OE uses classes (.bbclass), headers (.inc) and 
configuration files (.conf)

● You can inherit from class  with inherit
● “Deriving” a recipe is VERY useful →  .bbappend
● Files are organized as “layers” → meta-*
● OE data flow is based on packages (RPM, IPK, DEB)
● Package management on target is optional 
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Yocto / OE

● Yocto (symbol y) is a unit prefix in the metric system 
denoting a factor of 10-24

● Yocto project was started in 2010 by Linux foundation
● Sub-projects integration (OE, BitBake, Poky, etc.)
● Currently most of embedded companies and hardware 

makers are members (Intel, Montavista, NXP, TI, etc.)
● Richard Purdie (Linux Foundation fellow) is the 

architect
● Most of Linux BSP are provided as OE layers !
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Yocto / OE workflow
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Yocto / OE layers

IoT layer
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Yocto/Poky « in a nutshell »

● Installing Poky and BSP
$ git clone -b krogoth git://git.yoctoproject.org/poky

$ cd poky

$ git clone git://git.yoctoproject.org/meta-raspberrypi

● Creating working directory
$ source oe-init-build-env rpi-build

● Adding BSP layer to conf/bblayers.conf
$ bitbake-layers add-layer meta-raspberrypi

● Adding target name to  conf/local.conf
MACHINE = "raspberrypi"

● Creating minimal image
$ bitbake core-image-minimal

● Testing on SD card
$ sudo dd if=<path>/core-image-minimal-raspberrypi.rpi-sdimg 
of=/dev/sdb
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Use case 1 : IoT sensor

● Building a demo sensor for Smile
– Raspberry Pi (zero) 

– I²C temperature/pressure sensor (MPL115A2)

– Wi-Fi (USB)

– HTTP protocol
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Demonstrator global architecture

sensor
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Building distribution

● Starting from smaller distro « core-image-minimal »
● Adding options and new recipes

– Package management

– Standard or “derivated” recipes

– New recipes (I²C sensor control)

● Put everything in a new layer → meta-iot
$ yocto-layer create iot

● Updating local.conf (for test only)
● Creating a new distro recipe → « rpi-iot-image »
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Using .bbappend (derivation)

● One recipe (.bb) is defined in layer “A”
● We update recipe in a .bbappend located in layer “B”
● Currently

– Network configuration (Wi-Fi + HTTPd)

– I²C activation in config.txt

– Autoload of i2c-dev module
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Wi-Fi + HTTPd

● Wi-Fi adapter is supported → wlan0
● We need some additional packages (Wi-Fi management + 

HTTP server=
IMAGE_INSTALL_append += "iw wpa_supplicant lighttpd"

● Updating /etc/network/interfaces for wlan0 
automatic configuration

● WPA authentication (manual procedure for test)
# wpa_passphrase <ESSID> <password> > /etc/wpa_supplicant.conf

# ifdown wlan0

# ifup wlan0
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Sensor + I²C

● Updating config.txt
dtparam=i2c_arm=on

→  do_deploy_append() 
● Adding packages to local.conf

IMAGE_INSTALL_append += "i2c-tools kernel-modules"

● Loading I²C support
KERNEL_MODULE_AUTOLOAD += "i2c-dev"

→ Kernel .bbappend
● New recipe for MPL115A2 control

– Adapting original program (C, based on WiringPi)

– Starting a “service”, reading sensor every 20 secs 
→ using update-rc.d class
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NTP support

● No RTC on Raspberry Pi
● NTP recipe provided by meta-openembedded layer

$ cd poky

$ git clone git://git.openembedded.org/meta-openembedded

$ git checkout <yocto-branch>

$ bitbake-layers  add-layer ../meta-openembedded/meta-oe

$ bitbake-layers  add-layer ../meta-openembedded/meta-python

$ bitbake-layers  add-layer ../meta-openembedded/meta-networking

$ bitbake ntp tzdata

● Configuring timezone
# rm -f /etc/localtime

# ln -s /usr/share/zoneinfo/Europe/Paris /etc/localtime 

# cat /etc/default/ntpdate

...

NTPSERVERS="pool.ntp.org"
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Updading target

● SMART included by package management
● Creating packages index

$ bitbake package-index

● Creating HTTP  channels on the target
# smart channel --add <channel> baseurl=http://<pkg-dir>

# smart update

# smart install ntpdate tzdata
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Use case 2 : Border router (N. Aguirre)

● More complex demonstration based on sensorTag (TI)
● Raspberry Pi (Yocto 2.1 based) as “border router”
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SensorTag

● Cortex M3 (48MHz, 128KB flash, 8KB RAM)
● 512KB external flash for OTA and/or storage
● Low-power (10 mA active, 100 uA sleeping)
● Radio802.15.4 + Bluetooth Low Energy (BLE)
● $ 30 from TI website
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Raspberry Pi + 6LBR

● 6LBR est a board router software (between IoT/sensors 
world and Internet world)

● Get data from SensorTags (6LoWPAN)
● Send data to the “cloud”
● MQTT broker
● Time Series (Influxdb) database
● MQTT / database connector (Telegraf)
● Web management and display  (Grafana)
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Grafana display
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