

Dag Wieers

What is Timelab?

(3)

- A non-profit organization founded in 2010 □
- Located in the beautiful city of Ghent, Flanders
- A facilitator for "makers" to collaborate and share knowledge
- Offers:
 - CityLab; incl. 3D printers, laser cutters, CNC wood router...
 - Creation-projects; incl. this ADEM project
 - Workshops, boot-camps and (art) residencies
 - Co-working café and Friday lunches
- Supported by the city of Ghent and the Flemish government

What is the ADEM project?

- Collect and share real-time air quality information
- Technology
 - Create a device to collect particulate matter (fine dust) data
 - Create a web service to collect data and publish information
- Community
 - Community-driven project development
 - Public awareness of air pollution and risks (survey, campaign)
 - Open hardware, open software, open data
 - Fostering community around the project

Loss of life expectancy

- Average loss of life expectancy in months
 - due to PM₁₀ air pollution
 - PM_{2.5} is more dangerous
- Belgium right in the center
 - detailed maps indicate
 East/West Flanders and
 Antwerp to be even worse
- Based on data from 2000

Type of pollutants

- Everything larger than PM₁₀ gets trapped by the body early (hurray for nasal hairs!)
- PM₁₀ Inhalable particles
 - between 10μm and 2.5μm
 - settles in bronchi and lungs
 - airborne for hours
- PM_{2.5} Respirable particles
 - 2.5μm and smaller
 - settles in alveoli (gas exchange)
- Ultrafine particles
 - 0.1µm and smaller
 - can find its way to your blood stream
 - airborne for weeks (hurray for rain!)

https://en.wikipedia.org/wiki/Particulates

Air quality in Ghent

- Ghent is second largest city in Flanders
 - University city with population of 260.000 and 65.000 students
 - Lots of people use bicycles throughout the day
 - Port of Ghent and industry known source of air pollution
 - 2 highways close to city center (one stretching into center)
- Only 2 official air pollution stations with fine dust meters
 - Strategically placed to meet European levels
 - Yearly averages are useless, micro-measurement is key!
 - Air quality is not just PM, but PM is the least known variable today
- City council (incl. green party) is taking environment seriously!

Design goals

- Goal?
 - Create an open device that can be locally built and repaired
- How ?
 - Affordable general purpose hardware components
 - Open hardware, open software and open data
 - Modular design that is easy to customize (sensors, drivers)
 - Reuse of existing Open Source libraries

Hardware design

- Micro-controller / WIFI Sparkfun ESP8266 Thing
- I²C Sensors
 - Fine dust meter PPD42NS
 - Accelerometer MPU6050
 - Humidity sensor HTU21D
 - Air pressure sensor BMP180
 - GPS GY-NEO6MV2*
 - UART to I²C conversion Arduino Pro Mini (ATMEGA328P)
- RGB Led / Buzzer / LiPo Battery

Shinyei PPD42NS

Firmware design

- Arduino-based framework (CI testing with platformio)
- Components can be swapped/added by alternatives
 - Possibly using I²C id bus scanning / driver selection
 - Accepting contributions through GitHub
- Small test-examples for individual drivers/libraries
- Code-readability is key!
 - Abstraction through device drivers and wrappers
 - Simple state-machine with state-transitions

Current device status

(3)

- Hardware design
- Component evaluation and testing
- Initial PCB design + first casing design
- Prototype 1 (solder-less breadboard)
- Prototype 2 (solder-less breadboard); add Arduino Pro Mini
- Second PCB design + second casing design
- Prototype 3 (soldered breadboard); real-life testing
- ...
- Profit!

Various issues in the process

(1)

- Too few I/O pins for all components
- Imperfect signal from PPD42NS
- Underpowered components
 - GPS and PPD42NS may need 5V
- Onboard I²C of GPS was impossible to get working
- Various issues with ESP stability and timing sensitivity
 - Influences I²C communication (protocol analyzer!)
 - WIFI troubles (mostly captive portal / disconnects)
 - Infrequent crashes

Possible future functionality

- Collection of bicycle road quality information (i.e. bumps)
- Include more air quality sensors (incl. NO_x, SO₂, CO, O₃, ...)
- Support (outside and in-house) stationary devices
- Auto-calibration of devices when they pass each other
- Mobile app to guide runners/bikers to most healthy routes
- Correlate air quality to sources and weather conditions
- Billboards showing real-time air quality at "hot" spots

How can you help?

If you are interested to...

- develop on embedded platforms (Arduino/C++)
- visualize real-time sensor
 data (environmental or data-scientists)
- help install the device and train users
- create awareness by helping with campaigns

You are welcome

- no prior knowledge required
- device team meets every wednesday-evening
- ADEM progress meetings every month
- just come by at Timelab and shape the future!

More information

ADEM project

- GitHub http://github.com/timelab/ADEM/
- Website http://ik-adem.be/ (dutch)
- Email ja@ik-adem.be
- Twitter @ik_adem

Timelab vzw

- Website http://timelab.org/ (mostly dutch)
- Email hello@timelab.org

Interesting links

(F)

- Real-time Air Quality Index maps
 - http://aqicn.org/map/europe/
- ETH Zurich OpenSense project
 - http://www.opensense.ethz.ch/trac/
- Ultrafijnstof en rochelroutes
 - http://www.rochelroutes.nl/
- MEP, it's time for cleaner air!
 - https://www.youtube.com/watch?v=JmdPbXW-BTw
- Wikipedia information
 - Particulate matter: https://en.wikipedia.org/wiki/Particulates
 - Ultrafine particles: https://en.wikipedia.org/wiki/Ultrafine_particle
 - Diesel exhaust: https://en.wikipedia.org/wiki/Diesel_exhaust

Questions?

Bill of Materials

	Component	Туре	Non-bulk price	
	Microcontroller	Sparkfun ESP8266 Thing	€ 15,95	
	Accelerometer	MPU6050	€ 2,83	
	Barometer	BMP180	€ 2,04	
	Battery	LiPo 3,7V 500mAh	€ 2,00	
	Buzzer	KY-006	€ 1,44	
	Fine dust meter	PPD42NS	€ 15,90	
	GPS	GY-NEO6MV2	€ 11,66	Г
	Humidity sensor	HTU21D	€ 3,24	
	RGB Led	NeoPixel WS2812	€ 2,40	
	UART-to-I ² C convertor	ATmega328P Pro Mini	€ 3,00	
			€ 60,46	

Venturi effect

- Ensuring airflow on moving devices
 - so we can remove the resistor (heat pump) to save battery
 - Large intake hole creates underpressure at bottleneck, sucking air into the device

Usual suspects

()

- Air quality is affected by
 - Industry, power plants
 - Buses (diesel*), cars (incl. electrical cars), subway/trains, trams
 - Airplanes
 - Household heating
 - Agriculture
- But also
 - Weather conditions (wind, rain, air pressure)
 - Streets and buildings (air flow)
 - Indoor conditions (ventilation, candles, cooking*, smoking*)
 - Natural sources (wildfire, volcanoes, dust storms, ...)

Air-quality awareness projects

- 2010: Air-quality monitoring on trams in Zurich (ETH Zurich)
 - Measuring O₃, CO, NO₂ and ultrafine particles
- 2014: AIRbezen in Antwerp (Universiteit Antwerpen)
 - 700 strawberry plants measuring ferromagnetic fractions
- 2015: Ivy-plants in Ghent (Universiteit Antwerpen)
 - 240 ivy-plants measuring finedust particles
- 2016: CurieuzeNeuzen in Antwerp (Vrije Universiteit Brussel)
 - Measuring NO₂ using small collection-tubes

Concentration of PM₁₀ in Europe

European air quality standards

Pollutant	Period	Europe AQ	Permitted exceedings
PM _{2.5}	1 year	25 μg/m³	
PM ₁₀	24 h	200 μg/m³	35 / year
	1 year	40 μg/m³	
CO – Carbon monoxide	24h / 8h	10 mg/m ³	
SO ₂ – Sulphur dioxide	1h	350 μg/m³	24 / year
	24h / 8h	125 μg/m³	3 / year
NO ₂ – Nitrogen dioxide	1h	200 μg/m³	18 / year
	1 year	40 μg/m³	
O ₃ – Ozone	24h / 8h	120 μg/m³	
Benzene	1 year	5 μg/m³	
Pb – Lead	1 year	0.5 μg/m³	
As – Arsenic	1 year	6 ng/m³	
Cd – Cadmium	1 year	5 ng/m³	
Ni – Nickel	1 year	20 ng/m³	
Polycyclic Aromatic Hydrocarbons	1 year	1 ng/m³	

http://ec.europa.eu/environment/air/quality/standards.htm

WHO air quality guidelines

Particulate matter (PM _{2.5}) 24 h mean:	<25 µg/m³	WHO Air Quality Guideline;	
Particulate matter (PM ₁₀) 24 h mean:	<50 μg/m³	WHO Air Quality Guideline; ASHRAE 62. 1-2013;	
Carbon dioxide (CO ₂):	< 1000 ppm		
Sulphur dioxide (SO ₂) 24 h mean:	< 20 μg/m³	WHO Air Quality Guideline;	
Nitrogen dioxide (NO ₂) 1h mean;	< 200μg/m³ WHO Air Quality Guid		
Ozon (O ₃) 8 h mean:	< 100 μg/m³	WHO Air Quality Guideline;	
Carbon monoxide (CO) 8 h mean:	< 75 ppm	ASHRAE 62 1-2013;	
Formaldehyde:	< 0.1 mg/m ³	ASHRAE 62 1-2013;	

