
Copyright © 2017 Red Hat Inc.

1

20 years of Linux Virtual Memory: 20 years of Linux Virtual Memory:
from simple server workloads to from simple server workloads to

cloud virtualizationcloud virtualization

Red Hat, Inc.

Andrea Arcangeli <aarcange at redhat.com>

FOSDEM, Brussels

4 Feb 2017

https://www.redhat.com/

Copyright © 2017 Red Hat Inc.

2

Topics
● Milestones in the evolution of the Virtual

Memory subsystem
● Kernel Virtual Machine design
● Virtual Memory latest innovations

– Automatic NUMA balancing
– THP developments
– userfaultfd

● Postcopy live Migration, etc..

Copyright © 2017 Red Hat Inc.

3

Virtual Memory (simplified)
Virtual pages
They cost “nothing”
Practically unlimited
on 64bit archs

Physical pages
They cost money!
This is the RAM

arrows = pagetables
virtual to physical mapping

Copyright © 2017 Red Hat Inc.

4

PageTablesPageTables
● Common code and x86 pagetable format is a

tree

● All pagetables are 4KB in size
● Total: grep PageTables /proc/meminfo
● (((2**9)**4)*4096)>>48 = 1 → 48bits

pgd

pmd

pte

pud

pte

pmd

pte pte

pmd

pte

pud

pte

pmd

pte pte

2^9 = 512 arrows, not just 2

Copyright © 2017 Red Hat Inc.

5

The Fabric of the Virtual Memory
● The fabric are all those data structures that connects to the hardware

constrainted structures like pagetables and that collectively create all the
software abstractions we're accustomed to
– tasks, processes, virtual memory areas, mmap (glibc malloc) ...

● The fabric is the most black and white part of the Virtual Memory
● The algorithms doing the computations on those data structures are the

Virtual Memory heuristics
– They need to solve hard problems with no guaranteed perfect solution
– i.e. when it's the right time to start to unmap pages (swappiness)

● Some of the design didn't change: we still measure how hard it is to
free memory while we're trying to free it

● All free memory is used as cache and we overcommit by default (not
excessively by default)
– Android uses: echo 1 >/proc/sys/vm/overcommit_memory

Copyright © 2017 Red Hat Inc.

6

Physical page and struct page

PAGE_SIZE (4KiB) large physical pagestruct page
64 bytes

PAGE
SIZE
4KiB

...Physical RAMmem_map

64/4096

1.56%
of the RAM

Copyright © 2017 Red Hat Inc.

7

MM & VMA
● mm_struct aka MM

– Memory of the process
● Shared by threads

● vm_area_struct aka VMA
– Virtual Memory Area

● Created and teardown by mmap and
munmap

● Defines the virtual address space of an
“MM”

Copyright © 2017 Red Hat Inc.

8

Page reclaim clock algorithm

page[0]

page[1]

page[N]

m
em

_m
ap

pa
ge

 s
ca

n
cl

oc
k

al
go

ri
th

m

Copyright © 2017 Red Hat Inc.

9

Pgtable scan clock algorithm

page[0]

page[1]

page[N]

m
em

_m
ap

pa
ge

 r
ec

la
im

 c
lo

ck
 a

lg
or

ith
m

pr
oc

es
s

vi
rt

ua
l m

em
or

y
pr

oc
es

s
vi

rt
ua

l m
em

or
y

pg
ta

bl
e

sc
an

 c
lo

ck
 a

lg
or

ith
m

pr
oc

es
s

vi
rt

ua
l m

em
or

y
pr

oc
es

s
vi

rt
ua

l m
em

or
y

pgtables

pgtables
pgtables

pgtables

Copyright © 2017 Red Hat Inc.

10

Last Recently Used list

page[0]

page[1]

page[N]

m
em

_m
ap

page_lru

pgtables

pgtables

pgtables

pgtables

pr
oc

es
s

vi
rt

ua
l m

em
or

y
pr

oc
es

s
vi

rt
ua

l m
em

or
y

pg
ta

bl
e

sc
an

 c
lo

ck
 a

lg
or

ith
m

pr
oc

es
s

vi
rt

ua
l m

em
or

y
pr

oc
es

s
vi

rt
ua

l m
em

or
y

Copyright © 2017 Red Hat Inc.

11

Original bitmap...

Active and Inactive list LRU
● The active page LRU preserves the the active memory working set

– only the inactive LRU loses information as fast as use-once I/O goes
– Introduced in 2001, it works good enough also with an arbitrary balance
– Active/inactive list optimum balancing algorithm was solved in 2012-2014

● shadow radix tree nodes that detect refaults (more patches last month)

Copyright © 2017 Red Hat Inc.

12

Active & inactive LRU lists

Use-once pages to trash Use-many pages

pr
oc

es
s

vi
rt

ua
l m

em
or

y
pr

oc
es

s
vi

rt
ua

l m
em

or
y

pg
ta

bl
e

sc
an

 c
lo

ck
 a

lg
or

ith
m

pr
oc

es
s

vi
rt

ua
l m

em
or

y
pr

oc
es

s
vi

rt
ua

l m
em

or
y

page[0]

page[1]

page[N]

m
em

_m
ap

active_lruinactive_lru

Copyright © 2017 Red Hat Inc.

13

Active and Inactive list LRU
$ grep -i active /proc/meminfo
Active: 3555744 kB
Inactive: 2511156 kB
Active(anon): 2286400 kB
Inactive(anon): 1472540 kB
Active(file): 1269344 kB
Inactive(file): 1038616 kB

Copyright © 2017 Red Hat Inc.

14

rmap obsoleted the
pgtable scan clock algorithm

To free the candidate page
we must first first drop the
two arrows
(mark the pte non-present)

Copyright © 2017 Red Hat Inc.

15

rmap as in reverse mapping

rmap allows to reach the
pagetables of any given
physical page without
having to scan them all

Copyright © 2017 Red Hat Inc.

16

rmap unmap event

Page fault
swapin

Page fault
swapin

Fr
ee

 p
ag

e

If the userland program
accesses the page it will
trigger a pagein/swapin

Copyright © 2017 Red Hat Inc.

17

objrmap/anon-vma
PHYSICAL PAGE

Anonymous anon_vma

inode
(objrmap)

vma

vma

vma vma

prio_tree

rmap
item

rmap
item

vma

vma

PHYSICAL PAGE
Filesystem

PHYSICAL PAGE
Anonymous

PHYSICAL PAGE
Filesystem

PHYSICAL PAGE
KSM

Copyright © 2017 Red Hat Inc.

18

Active & inactive + rmap

page[0]

page[1]

page[N]

m
em

_m
ap

pr
oc

es
s

vi
rt

ua
l m

em
or

y
pr

oc
es

s
vi

rt
ua

l m
em

or
y

pr
oc

es
s

vi
rt

ua
l m

em
or

y
pr

oc
es

s
vi

rt
ua

l m
em

or
y

active_lruinactive_lru

rmap

rmap

rmap

rmap

Use-once pages to trash Use-many pages

Copyright © 2017 Red Hat Inc.

19

Active LRU workingset
detection

 fault ------------------------+
 |
 +--------------+ | +-------------+
 reclaim <- | inactive | <-+-- demotion | active | <--+
 +--------------+ +-------------+ |
 | |
 +-------------- promotion ------------------+

 +-memory available to cache-+
 | |
 +-inactive------+-active----+
 a b | c d e f g h i | J K L M N |
 +---------------+-----------+

Copyright © 2017 Red Hat Inc.

20

lru→inactive_age and radix tree
shadow entries

inode/file
radix_tree root

inode/file
radix_tree root

inode/file
radix_tree node

inode/file
radix_tree node

inode/file
radix_tree node

inode/file
radix_tree node

pagepage

Copyright © 2017 Red Hat Inc.

21

Reclaim saving inactive_age

inode/file
radix_tree root

inode/file
radix_tree root

inode/file
radix_tree node

inode/file
radix_tree node

inode/file
radix_tree node

inode/file
radix_tree node

pagepage Exceptional/shadow entry
memcg LRU

LRU reclaim inactive_age++

Exceptional/shadow entry
memcg LRU

LRU reclaim inactive_age++

Copyright © 2017 Red Hat Inc.

22

Many more LRUs
● Separated LRU for anon and file backed

mappings
● Memcg (memory cgroups) introduced per-

memcg LRUs
● Removal of unfreeable pages from LRUs

– anonymous memory with no swap
– mlocked memory

● Transparent Hugepages in the LRU increase
scalability further (lru size decreased 512 times)

Copyright © 2017 Red Hat Inc.

23

Recent Virtual Memory trends
● Optimzing the workloads for you, without manual tuning

– NUMA hard bindings (numactl) → Automatic NUMA
Balancing

– Hugetlbfs → Transparent Hugepage
● THP in tmpfs was merged in Kernel v4.8

– Programs or Virtual Machines duplicating memory → KSM
– Page pinning (RDMA/KVM shadow MMU) -> MMU notifier
– Private device memory managed by hand and pinned →

HMM/UVM (unified virtual memory) for GPU seamlessly
computing in GPU memory

● The optimizations can be optionally disabled

file:///proc/zoneinfo

Copyright © 2017 Red Hat Inc.

24

Copyright © 2017 Red Hat Inc.

25

Virtual Memory in hypervisors
● Can we use all these nice features to manage

the memory of Virtual Machines?
– i.e. in hypervisors?

● Why should we reinvent anything?
– We don't… with KVM

file:///proc/zoneinfo

Copyright © 2017 Red Hat Inc.

26

KVM philosophyKVM philosophy
➢ Reuse Linux code as much as possible
➢ Focus on virtualization only, leave other things to

respective developers
➢ VM
➢ cpu scheduler
➢ Drivers
➢ Numa
➢ Powermanagement

➢ Integrate well into existing infrastructure
➢ just a kernel module + mmu/sched notifier

Copyright © 2017 Red Hat Inc.

27

KVM design... way to go!!KVM design... way to go!!

Linux

Driver Driver Driver

Hardware

User
VM

User
VM

User
VM

KVM

Ordinary
Linux

Process

Ordinary
Linux

Process

Ordinary
Linux

Process

Modules

Copyright © 2017 Red Hat Inc.

28

KVM task modelKVM task model

kernel

task task guest task task guest

Copyright © 2017 Red Hat Inc.

29

KVM userland <-> KVM kernelKVM userland <-> KVM kernel

Native Guest
Execution

Kernel
exit
handler

Userspace
exit handler

Switch to
Guest
Mode

ioctl()

Userspace Kernel Guest

Copyright © 2017 Red Hat Inc.

30

Copyright © 2017 Red Hat Inc.

31

Automatic NUMA Balancing
benchmark

Intel SandyBridge (Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90GHz)

2 Sockets – 32 Cores with Hyperthreads

256G Memory

RHEV 3.6

Host bare metal – 3.10.0-327.el7 (RHEL7.2)

VM guest – 3.10.0-324.el7 (RHEL7.2)

VM – 32P , 160G (Optimized for Server)

Storage – Violin 6616 – 16G Fibre Channel

Oracle – 12C , 128G SGA

Test – Running Oracle OLTP workload with increasing user count and
measuring Trans / min for each run as a metric for comparison

Copyright © 2017 Red Hat Inc.

32

10U 20U 40U 80U 100U
0

200000

400000

600000

800000

1000000

1200000

1400000

4 VMs with different NUMA options

OLTP workload

Auto numa OFF
Auto Numa on - No pinning
Auto Numa on - Numa pinning

User count

Tr
an

s
/ m

in

Copyright © 2017 Red Hat Inc.

33

Automatic NUMA balancing
configuration

● https://tinyurl.com/zupp9v3
https://access.redhat.com/

● In RHEL7 Automatic NUMA balancing is enabled when:
– # numactl --hardware shows multiple nodes

● To disable automatic NUMA balancing:
– # echo 0 > /proc/sys/kernel/numa_balancing

● To enable automatic NUMA balancing:
– # echo 1 > /proc/sys/kernel/numa_balancing

● At boot:
– numa_balancing=enable|disable

https://tinyurl.com/zupp9v3
https://access.redhat.com/

Copyright © 2017 Red Hat Inc.

34

Copyright © 2017 Red Hat Inc.

35

Hugepages
● Traditionally x86 hardware gave us 4KiB

pages
● The more memory the bigger the overhead

in managing 4KiB pages
● What if you had bigger pages?

– 512 times bigger → 2MiB

Copyright © 2017 Red Hat Inc.

36

PageTablesPageTables

pgd

pmd

pte

pud

pte

pmd

pte pte

pmd

pte

pud

pte

pmd

pte pte

2^9 = 512 arrows, not just 2

Copyright © 2017 Red Hat Inc.

37

● Improve CPU performance
– Enlarge TLB size (essential for KVM)
– Speed up TLB miss (essential for KVM)

● Need 3 accesses to memory instead of 4 to refill the TLB
– Faster to allocate memory initially (minor)
– Page colouring inside the hugepage (minor)
– Higher scalability of the page LRUs

● Cons
– clear_page/copy_page less cache friendly
– higher memory footprint sometime
– Direct compaction takes time

Benefit of hugepages

Copyright © 2017 Red Hat Inc.

38

TLB miss cost:TLB miss cost:
number of accesses to memorynumber of accesses to memory

host THP off guest THP off

host THP on guest THP off

host THP off guest THP on

host THP on guest THP on

novirt THP off

novirt THP on

0 5 10 15 20 25

Ba
re

 m
et

al
Vi

rt
ua

liz
at

io
n

Copyright © 2017 Red Hat Inc.

39

● How do we get the benefits of hugetlbfs
without having to configure anything?
– Transparent Hugepage

● Any Linux process will receive 2M pages
– if the mmap region is 2M naturally

aligned
– If compaction succeeeds in producing

hugepages
● Entirely transparent to userland

Transparent Hugepage design

Copyright © 2017 Red Hat Inc.

40

● /sys/kernel/mm/transparent_hugepage/enabled

– [always] madvise never
● Always use THP if vma start/end permits

– always [madvise] never
● Use THP only inside MAD_HUGEPAGE

–Applies to khugepaged too
– always madvise [never]

● Never use THP
–khugepaged quits

● Default selected at build time

THP sysfs enabled

Copyright © 2017 Red Hat Inc.

41

● /sys/kernel/mm/transparent_hugepage/defrag

– [always] defer madvise never
● Use direct compaction (ideal for long lived allocations)

– always [defer] madvise never
● Defer compaction asynchronously (kswapd/kcompact)

– always defer [madvise] never
● Use direct compaction only inside MAD_HUGEPAGE

– always defer madvise [never]
● Never use compaction

● Disabling THP is excessive if direct compaction is too expensive
● Default will change to defer to reduce allocation latency
● KVM uses MADV_HUGEPAGE

– MADV_HUGEPAGE will still use direct compaction

THP defrag - compaction control

Copyright © 2017 Red Hat Inc.

42

Copyright © 2017 Red Hat Inc.

43

Why: Memory Externalization
● Memory externalization is about running a program with

part (or all) of its memory residing on a remote node

● Memory is transferred from the memory node to the
compute node on access

● Memory can be transferred from the compute node to the
memory node if it's not frequently used during memory
pressure

Node 0Compute node
Local Memory

Node 0Memory node
Remote Memory

userfault

Node 0Compute node
Local Memory

Node 0Memory node
Remote Memory

memory
pressure

Copyright © 2017 Red Hat Inc.

44

Postcopy live migration
● Postcopy live migration is a form of memory

externalization

● When the QEMU compute node (destination) faults on a
missing page that resides in the memory node (source) the
kernel has no way to fetch the page

– Solution: let QEMU in userland handle the pagefault

Partially funded by the Orbit European Union project

Node 0Compute node
Local Memory

Node 0Memory node
Remote Memory

userfault

QEMU
source

QEMU
destination

Postcopy live migration

Copyright © 2017 Red Hat Inc.

45

userfaultfd latency

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
0

200

400

600

800

1000

1200

1400

1600

userfault latency during postcopy live migration - 10Gbit
qemu 2.5+ - RHEL7.2+ - stressapptest running in guest

<= latency in milliseconds

nu
m

be
r

of
 u

se
rf

au
lts

Userfaults triggered on pages that were already in network-flight are
instantaneous. Background transfer seeks at the last userfault address.

Copyright © 2017 Red Hat Inc.

46

KVM precopy live migration

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

Before precopy

After precopy

During precopy

Precopy never completes until the database benchmark completes

10Gbit NIC
120GiB guest

Database TPM

~120sec
Time to

Transfer RAM
over network

pre
copy

Copyright © 2017 Red Hat Inc.

47

KVM postcopy live migration

00:10
00:50

01:30
02:10

02:50
03:30

04:10
04:50

05:30
06:10

06:50
07:30

08:10
08:50

09:30
10:10

10:50
11:30

12:10
12:50

13:30
14:10

14:50
15:30

16:10
16:50

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

Before postcopy

During postcopy

After postcopy

virsh migrate .. --postcopy --timeout <sec> --timeout-postcopy
virsh migrate .. --postcopy --postcopy-after-precopy

precopy runs
From 5m

To 7m

postcopy runs
From 7m

To about ~9m
deterministic

pre
copy

post
copy

khugepaged
collapses THPs

Copyright © 2017 Red Hat Inc.

48

All available upstream
● Userfaultfd() syscall in Linux Kernel >= v4.3
● Postcopy live migration in:

– QEMU >= v2.5.0
● Author: David Gilbert @ Red Hat Inc.

– Postcopy in Libvirt >= 1.3.4
– OpenStack Nova >= Newton

● … and coming soon in production starting with:
– RHEL 7.3

Copyright © 2017 Red Hat Inc.

49

Live migration total time

Total time
0

50

100

150

200

250

300

350

400

450

500

autoconverge
postcopyse

co
nd

s

Copyright © 2017 Red Hat Inc.

50

Max UDP latency
0

5

10

15

20

25

precopy timeout
autoconverge
postcopyse

co
nd

s

Live migration max perceived
downtime latency

Copyright © 2017 Red Hat Inc.

51

Copyright © 2017 Red Hat Inc.

52

Virtual Memory evolution since '99
● Amazing to see the room for further innovation there was back then

– Things constantly looks pretty mature
● They may actually have been considering my hardware back then

was much less powerful and not more complex than my
cellphone

● Unthinkable to maintain the current level of mission critical
complexity by reinventing the wheel in a not Open Source way
–Can perhaps be still done in a limited set of laptops and

cellphones models, but for how long?
● Innovation in the Virtual Memory space is probably one among the

plenty of factors that contributed to Linux success and the KVM lead in
OpenStack user base too
– KVM (unlike the preceding Hypervisor designs) leverages the power

of the Linux Virtual Memory in its entirety

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

