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Topics
● Milestones in the evolution of the Virtual 

Memory subsystem
● Kernel Virtual Machine design
● Virtual Memory latest innovations

– Automatic NUMA balancing
– THP developments
– userfaultfd

● Postcopy live Migration, etc..
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Virtual Memory (simplified)
Virtual pages
They cost “nothing”
Practically unlimited
on 64bit archs

Physical pages
They cost money!
This is the RAM

arrows = pagetables
virtual to physical mapping
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PageTablesPageTables
● Common code and x86 pagetable format is a 

tree

● All pagetables are 4KB in size
● Total: grep PageTables /proc/meminfo
● (((2**9)**4)*4096)>>48 = 1 → 48bits
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2^9 = 512 arrows, not just 2
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The Fabric of the Virtual Memory
● The fabric are all those data structures that connects to the hardware 

constrainted structures like pagetables and that collectively create all the 
software abstractions we're accustomed to
–  tasks, processes, virtual memory areas, mmap (glibc malloc) ...

● The fabric is the most black and white part of the Virtual Memory
● The algorithms doing the computations on those data structures are the 

Virtual Memory heuristics
– They need to solve hard problems with no guaranteed perfect solution
– i.e. when it's the right time to start to unmap pages (swappiness)

● Some of the design didn't change: we still measure how hard it is to 
free memory while we're trying to free it

● All free memory is used as cache and we overcommit by default (not 
excessively by default)
– Android uses: echo 1 >/proc/sys/vm/overcommit_memory
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Physical page and struct page

PAGE_SIZE (4KiB) large physical pagestruct page
64 bytes

PAGE
SIZE
4KiB

...Physical RAMmem_map

64/4096

1.56%
of the RAM
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MM & VMA
● mm_struct aka MM

– Memory of the process
● Shared by threads

● vm_area_struct aka VMA
– Virtual Memory Area

● Created and teardown by mmap and 
munmap

● Defines the virtual address space of an 
“MM”
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Page reclaim clock algorithm
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Pgtable scan clock algorithm
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Last Recently Used list
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Original bitmap...

Active and Inactive list LRU
● The active page LRU preserves the the active memory working set

– only the inactive LRU loses information as fast as use-once I/O goes
– Introduced in 2001, it works good enough also with an arbitrary balance
– Active/inactive list optimum balancing algorithm was solved in 2012-2014

● shadow radix tree nodes that detect refaults (more patches last month)
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Active & inactive LRU lists

Use-once pages to trash Use-many pages
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Active and Inactive list LRU
$ grep -i active /proc/meminfo 
Active:          3555744 kB
Inactive:        2511156 kB
Active(anon):    2286400 kB
Inactive(anon):  1472540 kB
Active(file):    1269344 kB
Inactive(file):  1038616 kB
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rmap obsoleted the
pgtable scan clock algorithm

To free the candidate page
we must first first drop the
two arrows
(mark the pte non-present)
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rmap as in reverse mapping

rmap allows to reach the
pagetables of any given
physical page without
having to scan them all
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rmap unmap event

Page fault
swapin

Page fault
swapin

Fr
ee
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e

If the userland program
accesses the page it will
trigger a pagein/swapin
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objrmap/anon-vma
PHYSICAL PAGE

Anonymous anon_vma

inode
(objrmap)

vma

vma

vma vma

prio_tree

rmap
item

rmap
item

vma

vma

PHYSICAL PAGE
Filesystem

PHYSICAL PAGE
Anonymous

PHYSICAL PAGE
Filesystem

PHYSICAL PAGE
KSM
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Active & inactive + rmap
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Active LRU workingset 
detection

  fault ------------------------+
                                |
             +--------------+   |            +-------------+
  reclaim <- |   inactive   | <-+-- demotion |    active   | <--+
             +--------------+                +-------------+    |
                    |                                           |
                    +-------------- promotion ------------------+

     +-memory available to cache-+
     |                           |
     +-inactive------+-active----+
 a b | c d e f g h i | J K L M N |
     +---------------+-----------+
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lru→inactive_age and radix tree 
shadow entries

inode/file
radix_tree root

inode/file
radix_tree root

inode/file
radix_tree node

inode/file
radix_tree node

inode/file
radix_tree node

inode/file
radix_tree node

pagepage
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Reclaim saving inactive_age

inode/file
radix_tree root

inode/file
radix_tree root

inode/file
radix_tree node

inode/file
radix_tree node

inode/file
radix_tree node

inode/file
radix_tree node

pagepage Exceptional/shadow entry
memcg LRU

LRU reclaim inactive_age++

Exceptional/shadow entry
memcg LRU

LRU reclaim inactive_age++
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Many more LRUs
● Separated LRU for anon and file backed 

mappings
● Memcg (memory cgroups) introduced per-

memcg LRUs
● Removal of unfreeable pages from LRUs

– anonymous memory with no swap
– mlocked memory

● Transparent Hugepages in the LRU increase 
scalability further (lru size decreased 512 times)
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Recent Virtual Memory trends
● Optimzing the workloads for you, without manual tuning

– NUMA hard bindings (numactl) → Automatic NUMA 
Balancing

– Hugetlbfs → Transparent Hugepage
● THP in tmpfs was merged in Kernel v4.8

– Programs or Virtual Machines duplicating memory → KSM
– Page pinning (RDMA/KVM shadow MMU) -> MMU notifier
– Private device memory managed by hand and pinned → 

HMM/UVM (unified virtual memory) for GPU seamlessly 
computing in GPU memory

● The optimizations can be optionally disabled

file:///proc/zoneinfo
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Virtual Memory in hypervisors
● Can we use all these nice features to manage 

the memory of Virtual Machines?
– i.e. in hypervisors?

● Why should we reinvent anything?
– We don't… with KVM

file:///proc/zoneinfo
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KVM philosophyKVM philosophy
➢ Reuse Linux code as much as possible
➢ Focus on virtualization only, leave other things to 

respective developers
➢ VM
➢ cpu scheduler
➢ Drivers
➢ Numa
➢ Powermanagement

➢ Integrate well into existing infrastructure
➢ just a kernel module + mmu/sched notifier
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KVM design... way to go!!KVM design... way to go!!

Linux

Driver Driver Driver

Hardware

User
VM

User
VM

User
VM

KVM

Ordinary
Linux

Process

Ordinary
Linux

Process

Ordinary
Linux

Process

Modules
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KVM task modelKVM task model

kernel

task task guest task task guest
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KVM userland <-> KVM kernelKVM userland <-> KVM kernel

Native Guest
Execution

Kernel
exit 
handler

Userspace
exit handler

Switch to
Guest 
Mode

ioctl()

Userspace Kernel Guest
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Automatic NUMA Balancing 
benchmark

Intel SandyBridge  (Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90GHz)

2 Sockets – 32 Cores with Hyperthreads 

256G Memory

RHEV 3.6

Host bare metal – 3.10.0-327.el7 (RHEL7.2)

VM guest – 3.10.0-324.el7 (RHEL7.2)

VM – 32P , 160G (Optimized for Server)

Storage – Violin 6616 – 16G Fibre Channel

Oracle – 12C , 128G SGA

Test – Running Oracle OLTP workload with increasing user count and 
measuring Trans / min for each run as a metric for comparison
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Automatic NUMA balancing 
configuration

● https://tinyurl.com/zupp9v3     
https://access.redhat.com/ 

● In RHEL7 Automatic NUMA balancing is enabled when:
– # numactl --hardware shows multiple nodes

● To disable automatic NUMA balancing:
– # echo 0 > /proc/sys/kernel/numa_balancing

● To enable automatic NUMA balancing:
– # echo 1 > /proc/sys/kernel/numa_balancing

● At boot:
– numa_balancing=enable|disable

https://tinyurl.com/zupp9v3
https://access.redhat.com/
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Hugepages
● Traditionally x86 hardware gave us 4KiB 

pages
● The more memory the bigger the overhead 

in managing 4KiB pages
● What if you had bigger pages?

– 512 times bigger → 2MiB
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PageTablesPageTables
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● Improve CPU performance
– Enlarge TLB size (essential for KVM)
– Speed up TLB miss (essential for KVM)

● Need 3 accesses to memory instead of 4 to refill the TLB
– Faster to allocate memory initially (minor)
– Page colouring inside the hugepage (minor)
– Higher scalability of the page LRUs

● Cons
– clear_page/copy_page less cache friendly
– higher memory footprint sometime
– Direct compaction takes time

Benefit of hugepages
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TLB miss cost:TLB miss cost:
number of accesses to memorynumber of accesses to memory
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● How do we get the benefits of hugetlbfs 
without having to configure anything?
– Transparent Hugepage

● Any Linux process will receive 2M pages
– if the mmap region is 2M naturally 

aligned
– If compaction succeeeds in producing 

hugepages
● Entirely transparent to userland 

Transparent Hugepage design
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● /sys/kernel/mm/transparent_hugepage/enabled

– [always] madvise never
● Always use THP if vma start/end permits

– always [madvise] never
● Use THP only inside MAD_HUGEPAGE

–Applies to khugepaged too
– always madvise [never]

● Never use THP
–khugepaged quits

● Default selected at build time

THP sysfs enabled
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● /sys/kernel/mm/transparent_hugepage/defrag

– [always] defer madvise never
● Use direct compaction (ideal for long lived allocations)

– always [defer] madvise never
● Defer compaction asynchronously (kswapd/kcompact)

– always defer [madvise] never
● Use direct compaction only inside MAD_HUGEPAGE

– always defer madvise [never]
● Never use compaction

● Disabling THP is excessive if direct compaction is too expensive
● Default will change to defer to reduce allocation latency
● KVM uses MADV_HUGEPAGE

– MADV_HUGEPAGE will still use direct compaction

THP defrag - compaction control
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Why: Memory Externalization
● Memory externalization is about running a program with 

part (or all) of its memory residing on a remote node

● Memory is transferred from the memory node to the 
compute node on access

● Memory can be transferred from the compute node to the 
memory node if it's not frequently used during memory 
pressure

Node 0Compute node
Local Memory

Node 0Memory node
Remote Memory

userfault

Node 0Compute node
Local Memory

Node 0Memory node
Remote Memory

memory
pressure
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Postcopy live migration
● Postcopy live migration is a form of memory 

externalization

● When the QEMU compute node (destination) faults on a 
missing page that resides in the memory node (source) the 
kernel has no way to fetch the page

– Solution: let QEMU in userland handle the pagefault

Partially funded by the Orbit European Union project

Node 0Compute node
Local Memory

Node 0Memory node
Remote Memory

userfault

QEMU
source

QEMU
destination

Postcopy live migration
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userfaultfd latency

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
0

200

400

600

800

1000

1200

1400

1600

userfault latency during postcopy live migration - 10Gbit
qemu 2.5+ - RHEL7.2+ - stressapptest running in guest

<= latency in milliseconds

nu
m

be
r 

of
 u

se
rf

au
lts

Userfaults triggered on pages that were already in network-flight are 
instantaneous. Background transfer seeks at the last userfault address.
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KVM precopy live migration
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KVM postcopy live migration
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All available upstream
● Userfaultfd() syscall in Linux Kernel >= v4.3
● Postcopy live migration in:

– QEMU >= v2.5.0
● Author: David Gilbert @ Red Hat Inc.

– Postcopy in Libvirt >= 1.3.4
– OpenStack Nova >= Newton

● … and coming soon in production starting with:
– RHEL 7.3
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Live migration total time
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Max UDP latency
0

5

10

15

20

25

precopy timeout
autoconverge
postcopyse

co
nd

s

Live migration max perceived 
downtime latency



Copyright © 2017 Red Hat Inc.

51



Copyright © 2017 Red Hat Inc.

52

Virtual Memory evolution since '99
● Amazing to see the room for further innovation there was back then

– Things constantly looks pretty mature
● They may actually have been considering my hardware back then 

was much less powerful and not more complex than my 
cellphone

● Unthinkable to maintain the current level of mission critical 
complexity by reinventing the wheel in a not Open Source way
–Can perhaps be still done in a limited set of laptops and 

cellphones models, but for how long?
● Innovation in the Virtual Memory space is probably one among the 

plenty of factors that contributed to Linux success and the KVM lead in 
OpenStack user base too
– KVM (unlike the preceding Hypervisor designs) leverages the power 

of the Linux Virtual Memory in its entirety
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