Network Traffic Analysis & Cluster Analysis

Exploring Hadoop Clusters using Free Tools

Background and Goals:

- Apache Spot was started recently
 - DNS, Netflow, PCAP data is analyzed
 - The goal is to identify:
 "suspicous connections"
 or:
 "dangerous activity".
- What is suspicious?
 - Apache Spot uses a topic-model approach, to classify traffic.

Used Raw Data:

https://en.wikipedia.org/wiki/List_of_network_protocols_(OSI_model)

Our Goals (midterm):

- Use local context information instead of single package data only.
 - (A) Temporal communication networks
 - (B) Vectorization of measured properties from multiple sources
- Consider additional communication layers:
 - Syslog
 - Webserver logs
 - Cloudera Manager events
 - Cloudera Navigator events

About Event Processing:

- Kafka gives an order only within a partition
 - Post-processing in Spark
- HBase sorts rows by key
 - Table design is now strictly time related, which is not a very universal approach.
- Kudu uses Primary Keys
 - Each Kudu table must declare a primary key comprised of one or more columns. Primary key columns must be **non-nullable**, and may not be a boolean or floating-point type. *Every row in a table must have a unique set of values for its primary key columns*. As with a traditional RDBMS, primary key selection is critical to ensuring performant database operations.
 - But: Events have timestamps which are not really unique!!!

Our Activities

- Implement a data pipeline:
 - Kafka => Spark => HDFS => Notebook
 - Kafka => Spark => Kudu
 - Kudu => Spark => HDFS => (Notebook)
- Create reference data sets
 - Scenario A: Terrasort (Big-Batch-Workload)
 - Scenario B: HDFS PUT,GET; HUE (Interactive Workload)
 - Scenario C: Idle cluster (Vacation time)
 - Scenario D: Kafka => Spark => Kudu (Realistic production Workload)
 - Scenario E: Twitter => Spark => Kudu (Realistic production Workload)

Results

- Scenario A: Batch workload
- Scenario D: External data acquisition
- Scenario E: Idle cluster

Scenario A:

TERRAGEN TERRASORT

Scenario D:

IDLE CLUSTER (some unknown activity in the background)

172.28.208.1

First Iteration:

- We organized our work in 3 phases:
 - Data and domain inspection + solution proposals
 - Environment setup
 - Tool centric: Jupyter, Eclipse, IntlliJ, CloudCat cluster, Git repository
 - Data centric:, Data collector tool, Demo data generation, Data formats
 - Data capturing and data generation
 - Analyzing the data in a well defined environment
- Results are available in Git repos:
 - http://github.mtv.cloudera.com/kamir/Snaffer
 - https://github.com/mbalassi/packet-inspector
- Increase functionality and knowledge by doing small iterations
- Share code and knowledge

How it works ...

- We collect raw data in Avro format, using the Snaffer script.
- We transform the events to networks, using Hive.
- We analyze and visualize the networks using Gephi.

Outlook

Entropy of Temporal Network

- Time evolution of the network properties
 - Topology
 - Topological node properties

Milestone One:

- Follow a common DSP model (data science process model)
- Use CDH default tools and gain experience
- Work with Kafka (for input) and Hive tables (for input and output)
- Implement a dataset profiling procedure, using Spark
- Present results, using Jupiter notebook
- Increase functionality and knowledge by doing small iterations
- Share code and knowledge

TODO (1)

- Define data sources according to inspection methods
- Define Avro schema and SOLR schema
- Automatic dataset initalization / validation

DESCRIBE as WIKI and than instantiate via ANSIBLE

TODO (2)

- SNAProfiler
 - SQL for Network creation
 - Topology per time slice
- Envelop:
 - Allows us to hook in the SNAProfiler component as a JAR.

TODO (3)

- Time Slice Preparation
 - KAFKA => Hbase
 - App—controled time slice management:
 - (K,V): (EXP_METRIC_TS, NETWORKDATA_as_edgelist)
 - Opposite to TIMESERIES presentation

References

- https://docs.google.com/document/d/12SHvTGJWtewk8CpUClOy22 mh7cUow18F_Jg2ZNNE3h8/edit#heading=h.r4wlzr2ctack
- https://docs.google.com/document/d/1sD0_T2fQ7J5k7Ttx1vmAkYk MljMySgKFimm4hNVXxgA/edit#
- http://research.ijcaonline.org/volume74/number17/pxc3890233.pdf
- https://www.cs.princeton.edu/~blei/papers/BleiNgJordan2003.pdf