Pivotal

Graph Analytics on Massively Parallel Processing Databases

Frank McQuillan Feb 2017

MPP databases effective for graph analytics at scale in the enterprise

Database Engine Popularity

315 systems in ranking, January 2017

Rank					Score		
Jan 2017	Dec 2016	Jan 2016	DBMS	Database Model	Jan 2017	Dec 2016	Jan 2016
1.	1.	1.	Oracle 🗄	Relational DBMS	1416.72	+12.32	-79.36
2.	2.	2.	MySQL 🔠	Relational DBMS	1366.29	-8.12	+67.03
3.	3.	3.	Microsoft SQL Server	Relational DBMS	1220.95	-5.70	+76.89
4.	♠ 5.	4.	MongoDB 🗄	Document store	331.90	+3.22	+25.88
5.	4 .	5.	PostgreSQL	Relational DBMS	330.37	+0.35	+47.97
6.	6.	6.	DB2	Relational DBMS	182.49	-1.85	-13.88
7.	7.	1 8.	Cassandra 🗄	Wide column store	136.44	+2.16	+5.49
8.	8.	4 7.	Microsoft Access	Relational DBMS	127.45	+2.75	-6.59
9.	9.	1 0.	Redis 🖶	Key-value store	118.70	-1.20	+17.54
10.	10.	4 9.	SQLite	Relational DBMS	112.38	+1.54	+8.64
21.	21.	21.	Neo4j 🗄	Graph DBMS	36.26	-0.56	+3.26
47.	47.	4 4.	Titan	Graph DBMS	5.50	+0.04	-0.15
112.	112.	^ 118.	Giraph	Graph DBMS	1.04	+0.00	+0.11
180.	192.	1 235.	GraphDB	Multi-model 🚺	0.31	+0.09	+0.21

Pivotal

Graph Engine Trends

Pivotal

Introduction to Graphs

• Graphs can be small...

Introduction to Graphs

• ...but many real world graphs are very large

Sample LinkedIn social graph

Why Graph Analytics on MPP Databases?

- MPP is built for very large data sets
- Many enterprise use cases combine graph analytics with other techniques
- SQL
 - Most common workload in the enterprise
 - Widely used by analysts and data scientists
 - Ecosystem of business intelligence applications

Why Graph Analytics on MPP Databases?

- Data locality
 - Cost of replicating, moving and transforming data to an external system can be high
- Policy
 - Cost, deployment, oversight, support issues adding a new execution engine
 - Convince the CIO to use a specialized system in production

But...

Can graph analytic processing be *efficiently performed* on relational data in an MPP database?

Yes!

 Graph analytic processing on Greenplum database using Apache MADlib can solve for a wide range of real world use cases

Apache MADlib (incubating)

Scalable, In-Database Machine Learning

Apache MADlib (incubating): Big Data Machine Learning in SQL for Data Scientists

Open source, commercially friendly Apache license Supports PostgreSQL, Greenplum Database[™], and Apache HAWQ (incubating) Powerful analytics for big data

- Open source <u>https://github.com/apache/incubator-madlib</u>
- Downloads and docs <u>http://madlib.incubator.apache.org/</u>
 - Wiki <u>https://cwiki.apache.org/confluence/display/MADLIB/</u>

MADIb project was initiated in 2011 by EMC/Greenplum architects and Joe Hellerstein from Univ. of California, Berkeley.

UrbanDictionary.com: *mad* (*adj.*): an adjective used to enhance a noun.

- 1- dude, you got skills.
- 2- dude, you got mad skills.

Generalized Linear Models

- Linear Regression
- Logistic Regression
- Multinomial Logistic Regression
- Ordinal Regression
- Cox Proportional Hazards Regression
- Elastic Net Regularization
- Robust Variance (Huber-White), Clustered Variance, Marginal Effects

Matrix Factorization

- Singular Value Decomposition (SVD)
- Low Rank

Linear Systems

- Sparse and Dense Solvers
- Linear Algebra

Graph

Single Source Shortest Path

Other Machine Learning Algorithms

- Principal Component Analysis (PCA)
- Association Rules (Apriori)
- Topic Modeling (Parallel LDA)
- Decision Trees
- Random Forest
- Conditional Random Field (CRF)
- Clustering (K-means)
- Cross Validation
- Naïve Bayes
- Support Vector Machines (SVM)
- Prediction Metrics
- K-Nearest Neighbors

Time Series

ARIMA

Path Functions

Operations on Pattern Matches

New in v1.10, more to come

Descriptive Statistics

Sketch-Based Estimators

- CountMin (Cormode-Muth.)
- FM (Flajolet-Martin)
- MFV (Most Frequent Values) Correlation and Covariance Summary

Inferential Statistics Hypothesis Tests

Utility Modules

Array and Matrix Operations Sparse Vectors Random Sampling Probability Functions Data Preparation PMML Export Conjugate Gradient Stemming Sessionization Pivot

Jan 2017

Example Usage

Train a model

Predict for new data

Greenplum Database

Massively Parallel Processing

Graph Representation in MADlib

Directed graph (digraph)

Graph Representation in MADlib

.

Vertex Table

Vertex	Vertex Params	
0		
1		
2		
3		

.

.

Edge Table

Source Vertex	Dest Vertex	Edge Weight	Edge Params
0	3	1.0	
1	0	5.0	
1	2	3.0	
2	3	8.0	
3	0	3.0	
3	1	2.0	

.

Single Source Shortest Path

 Given a graph and a source vertex, find a path to every vertex such that the sum of the weights of its constituent edges is minimized

Shortest path (A, C, E, D, F) between vertices A and F in the weighted directed graph

Image from https://en.wikipedia.org/wiki/Shortest_path_problem

Single Source Shortest Path

- Use cases
 - Vehicle routing/navigation
 - Degrees of separation in a social network
 - Min-delay path in a telecommunications network
 - Plant and facility layout
 - VLSI design

SSSP Performance on Greenplum Database

SSSP, 100 edges per vertex, Greenplum 4.3.10

O(VE) worst case but not common

Num vertices (X 1000)

6 segments per host

Single Source Shortest Path in MADlib

SSSP

graph_sssp(vertex_table,	vertex table
	vertex_id,	col in vertex table containing vertex IDs
	edge_table,	edge table
	edge_args,	source, dest and edge weights col in the edge table
	source_vertex,	source vertex for the algorithm to start
	sssp_table	output table of SSSP for all dest vertices
);		

Path retrieval

Implementation Considerations

- Relationships
 - Not a 1st class citizen in relational databases (unlike certain graph databases)
 - JOIN operations are compute and memory intensive so want to minimize
- Table scans
 - Depth first search involves more table scans (expensive) than breadth first search
 - Greedy algorithms that do not take advantage of query optimizer will be slower

Implementation Considerations

- Database limits
 - PostgreSQL limits maximum field size to 1GB

MADlib Graph Roadmap (Near Term)*

Algorithm	Uses
All pairs shortest path (APSP)	 O(V³) Floyd-Warshall Betweenness and closeness centrality measures to identify influencers Graph diameter
Page rank	Identify importance of vertices
Connected components	 Clustering common components Measure of resilience in network flow problems
Graph cut	Partition a graph into two disjoint subsets

Cybersecurity Example Lateral Movement Detection

Perimeter Defense Inadequate

- Defending the perimeter no longer enough
- No 100%, fool-proof way to keep bad actors out
- Some threats come from within
- The idea of a **perimeter becoming obsolete** with mobile, cloud, IoT
- Need better methods for threat detection inside the network

Pivotal

APT Kill Chain

Pivotal

Lateral Movement Detection

What: Identify anomalous user-level access to hosts How: Look at people & machines

- Users (user behavior models)
- Network, servers (user peer models)

Scenarios:

Network reconnaissance from remote adversary on hijacked device Ill-intentioned activities by legitimate employee Access policy abuse

Business values:

- Immediate security alert generation
- Enhanced SIEM alert queue prioritization
- Focused monitoring
- Future integration with other analytic models for 360° attack view

Lateral Movement Detection (LMD) – Flow Diagram

Pivotal

Regression-Based Model

- Model to identify users with unusual variation in the number of servers accessed over time
- Build a regression model for each user (Y = aX + b)
- No. of servers accessed each week (Y)
 - ~ Week Index (X)
- Find the slope of the regression line for each user (a)
- Identify users who have a high positive or negative slope to find users with unusual activity

Number of Servers

Regression plot of number of servers for a user

Week of the year

Pivota

User Behavior Models (UBM)

Build historical behavioral profile for each user based on following features:

- Servers accessed
- IP addresses logged in from
- Geographical information of login

Models stress individual user/job log-in frequency

Multiple **Feature Generations** reduce false alarms:

- Aggregate servers to respective server group
- Incorporate server criticality
- Assign more weight to less popular servers and IP addresses
- E.g. print servers are low-weighted
- Use recommendation engine to suggest servers to users based on job roles and peers

Pivotal.

Graph Model

Using historical windows events data to build graphs* of typical user behavior

- · Which machines does the user log into?
- · Which machines does the user log in from?
- How often?
- In which order?

Ask if this behavior is typical

- Is it typical for this user?
- · Is it typical for someone in a particular department?
- · Is this typical for someone in the user's job role?

Graph models are sensitive to direction, order, and frequency

- 4th Apache MADlib (incubating) release Feb 2017
- Project is moving toward top level status

You are welcome to join us!!!

MPP databases effective for graph analytics at scale in the enterprise

References

[1] The case against specialized graph analytics engines <u>http://cidrdb.org/cidr2015/Papers/CIDR15_Paper20.pdf</u> <u>http://pages.cs.wisc.edu/~jignesh/publ/Grail-slides.pdf</u>

[2] MADlib papers http://db.cs.berkeley.edu/papers/vldb09-madskills.pdf https://www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-38.pdf

[3] Bellman-Ford algorithmR. Bellman, "On a routing problem," Quarterly of applied mathematics (1958), pp. 87–90.L. R. Ford Jr, "Network flow theory," Tech. rep. DTIC Document, 1956.

[4] Alexander D. Kenta, Lorie M. Liebrock, Joshua C. Neila, "Authentication graphs: Analyzing user behavior within an enterprise network"

Apache MADlib Resources

- Web site
 - <u>http://madlib.incubator.apache.org/</u>
- Wiki
 - <u>http://incubator.apache.org/projects/madli</u>
 <u>b.html</u>
- User docs
 - <u>http://madlib.incubator.apache.org/docs/l</u> <u>atest/index.html</u>
- Technical docs
 - <u>http://madlib.incubator.apache.org/design</u>
 <u>.pdf</u>
- Pivotal commercial site
 - <u>http://pivotal.io/madlib</u>

- Mailing lists and JIRAs
 - <u>https://mail-archives.apache.org/mod_mb</u> ox/incubator-madlib-dev/
 - <u>http://mail-archives.apache.org/mod_mbo</u>
 <u>x/incubator-madlib-user/</u>
 - <u>https://issues.apache.org/jira/browse/MA</u>
 <u>DLIB</u>
- PivotalR
 - <u>https://cran.r-project.org/web/packages/Pi</u>
 <u>votalR/index.html</u>
- Github
 - <u>https://github.com/apache/incubator-madl</u>
 <u>ib</u>
 - <u>https://github.com/pivotalsoftware/Pivotal</u>
 <u>R</u>

Thank you!

Backup Slides

MADIb Execution Flow

MADlib Architecture

Greenplum Database

SYSTEM ACCESS

CLIENT ACCESS

PSQL, ODBC, JDBC

BULK LOAD/UNLOAD

GPLoad, GPFdist, External Tables, GPHDFS ADMIN TOOLS GP Perfmon, GP Support

3rd PARTY TOOLS

Compatible with Industry Standard BI & ETL Tools

DATA PROCESSING

DATA STORAGE SQLWorkload ManagementSTANDARDResource QueuesCOMPLIANCEGP Workload Manger

nt Big Data Query Processing GPORCA Optimizer MPP Query Execution IN-DATABASE PROGRAMMING LANGUAGES PL/pgSQL, PL/Python, PL/R, PL/Perl, PL/Java, PL/C

IN-DATABASE ANALYTICS & EXTENSIONS MADlib, PostGIS, PGCrypto

FULLY ACID COMPLIANT TRANSACTIONAL DATABASE

POLYMORPHIC STORAGE HEAP, Append Only, Columnar, External, Compression

MULTI-VERSION CONCURRENCY CONTROL (MVCC)

INDEXES B-Tree, Bitmap, GiST

Pivotal Query Optimizer

- Applies broad set of optimization strategies at once
 - Considers many more plan alternatives
 - Optimizes a wider range of queries
 - Optimizes memory usage
- Significant improvements for demanding queries

Turns a SQL query into an execution plan

E6420706**1**7463**686513** 4746C65 16E6420 BreachE204 6520 573204C697474CC 520 86FAF6420 696EA1 206E61C F**76**6 6C**79** 52A 261736B60142E20 0884FA017745C7A6 10 **OF2A5**97**D**011**A56AF**E6 0736852756B013 OAA. 719System Safety Con 28**BE5**BF7D011A0010A31

Cost of Cybercrime on the Rise

- Cybercrime costs average US enterprise
 \$17m per year*
- Cost grew at 15% CAGR over last three years
- Any given cybercrime can cost significantly more
- Target's 2014 hack cost company approximately **\$162m**
- Costs not just financial, also reputational

*Source: 2016 Cost of Cyber Crime Study & the Risk of Business Innovation, Ponemon Institute

