
Hyper-converged, persistent storage 
for containers with GlusterFS

Mohamed Ashiq Liazudeen & José A. Rivera



Introductions & Agenda
Who are these guys and what are they talking about?

0

⬢ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡



Mohamed Ashiq Liazudeen
Associate Software Engineer, Red Hat

Ashiq is one of the maintainer of 
Gluster container and works on 
Hyper-Converged Gluster on 
Kubernetes and Openshift. Contributes 
to Heketi, Glusterfs, gluster-containers 
and gk-deploy.

Introductions
José A. Rivera
Software Engineer, Red Hat

Part of Red Hat Storage, José works 
on integrating GlusterFS with 
container platforms and network file 
sharing protocols. Most recently, he 
helped develop a tool for deploying 
GlusterFS as a hyper-converged 
storage solution for Kubernetes and 
OpenShift.

José is a member of the Samba Team 
and the Kubernetes Storage SIG.

This presentation uses the Imogen template from SlidesCarnival. The template is available, free 
to use, under Creative Commons Attribution license. 

⬢ ⬢ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡
Introductions & Agenda

http://www.slidescarnival.com/imogen-free-presentation-template/399
http://www.slidescarnival.com/
http://creativecommons.org/licenses/by/4.0/


Agenda
0. Introduction & Agenda

1. Motivations
◇ Why are we doing this?
◇ What platforms are we targeting?
◇ What components are we using?

2. Creating Hyper-Convergence
◇ Container Platform Provisioning
◇ Containerizing GlusterFS
◇ Containerizing heketi

3. Deployment & Usage
◇ Target Use Cases
◇ Deployment Demo
◇ Usage Demo

⬢ ⬢ ⬢ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡
Introductions & Agenda



Motivations
Why are we doing this?

1

⬢ ⬢ ⬢ ⬢ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡



Framing the Problem
Containers are ephemeral by nature, but many applications 
require storage that is persistent beyond the lifecycles of the 
application containers. However, robust storage solutions 
often require investments in proprietary hardware 
appliances and training.

We wanted to provide a persistent storage solution that:

◇ Requires minimal hardware investment

◇ Is as simple and transparent as possible to both 
administrators and users

◇ Is free and open source with a supportive community

⬢ ⬢ ⬢ ⬢ ⬢ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡
Motivations



Target Platforms

https://kubernetes.io/ https://www.openshift.com/

⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡
Motivations

https://kubernetes.io/
https://kubernetes.io/
https://www.openshift.com/
https://www.openshift.com/


Target Platforms

https://kubernetes.io/ https://www.openshift.com/

…because Red Hat

⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡
Motivations

https://kubernetes.io/
https://kubernetes.io/
https://www.openshift.com/
https://www.openshift.com/


Component Projects

GlusterFS heketi

https://www.gluster.org/ https://github.com/heketi/heketi

⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡
Motivations

https://www.gluster.org/
https://www.gluster.org/
https://github.com/heketi/heketi
https://github.com/heketi/heketi


GlusterFS
GlusterFS is a distributed, software-defined filesystem. 
Storage devices, called “bricks”, are selected on one or more 
nodes to form logical storage volumes across a Gluster 
cluster.

◇ Runs on commodity hardware (even a Raspberry Pi!)

◇ Scale-out design: easy to increase storage by simply 
adding more nodes

◇ Provides features like cross-node and cross-site 
replication, usage balancing, and iSCSI storage access

⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡
Motivations

https://nickhowell.co.uk/2016/07/23/raspberry-pi-nas-with-gluster/


heketi
heketi is the RESTful volume management interface for 
GlusterFS.

◇ Allows for programmatic access to the most common 
GlusterFS volume management tasks

◇ Can manage multiple clusters from a single instance

◇ Lightweight, reliable, and simple

⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡
Motivations



⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡
Motivations

NODENODE NODE

POD

NODE

  GlusterFS cluster

POD POD POD

or

DISKS



Gluing Pieces Together
You can find our work to bring together all these projects on 
GitHub, at https://github.com/gluster/gluster-kubernetes

◇ Documents how to put it all together

◇ Provides an easy-to-use deployment tool (gk-deploy)

◇ Has a quickstart guide for those who want to start 
playing with it right away

⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡
Motivations

https://github.com/gluster/gluster-kubernetes


Creating 
Hyper-Convergence
Putting the pieces together.

2

⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡



Containerizing Gluster
Raw command for running a gluster container:
# docker run --name gluster -d -v 
/etc/glusterfs:/etc/glusterfs:z -v 
/var/lib/glusterd:/var/lib/glusterd:z -v 
/var/log/glusterfs:/var/log/glusterfs:z -v 
/sys/fs/cgroup:/sys/fs/cgroup:ro --net=host 
--privileged=true -v /dev:/dev gluster/gluster-centos

Command for running GlusterFS pod in Kubernetes:
# kubectl create -f glusterfs-daemonset.yaml

⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡
Creating Hyper-Convergence



The Gluster container required several pieces of 
configuration to get working:

◇ Containerized systemd

◇ Privileged container

◇ Startup script

◇ Bind mounts for persisting Gluster config

◇ Bind mount devices

◇ Access to the host network

⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡
Creating Hyper-Convergence

Containerizing Gluster



We needed to make some changes to the standard way 
pods are usually deployed:

◇ Containerized systemd: Gluster has to run more than 
one process and needed someone to cleanup zombie 
processes.

◇ Running as a privileged container was required to run 
systemd and now needed to create logical volume 
from gluster container.

◇ We installed a startup script within the container:
￭ Copy the Initial configuration
￭ Gets the fstab maintained by heketi and mounts 

it on the pod for the brick process.

⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡
Creating Hyper-Convergence

Containerizing Gluster



There were also some requirements from the fact that 
storage devices are bound to their nodes:

◇ We needed to create several bind mounts for 
persisting Gluster config on the host
￭ /var/lib/glusterd – volume management files
￭ /var/log/glusterfs – gluster log files
￭ /etc/glusterfs – glusterd management files

◇ Bind mount devices: /dev has to be bind mounted to 
use the local storage disks.

⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡
Creating Hyper-Convergence

Containerizing Gluster



Finally, access to the host network was also crucial:

◇ Gluster node IP needed to be constant

◇ Since the Gluster config is tied to the node, sharing the 
same network identity was needed

◇ Direct access gave better performance!

⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡
Creating Hyper-Convergence

Containerizing Gluster



Containerizing heketi
Being a much smaller and newer application than Gluster, 
containerizing heketi proved easier:

◇ The image was easy to build

◇ We had an issue where we needed to authenticate 
through kube-api to access the Gluster pods. Using a 
service account and adding it to the deployment spec 
of heketi solved it!

◇ heketi stores configuration in a Bolt database, which 
must persist if the heketi pod goes down… wait, WE’RE 
persistent storage, let’s put it in a Gluster volume! ;-D

⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡
Creating Hyper-Convergence



Deployment & Usage
Look! It works!

3

⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡



Persistent Storage

⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬡ ⬡ ⬡ ⬡ ⬡ ⬡
Deployment & Usage

The creation and usage of persistent storage in Kubernetes 
and OpenShift is enabled by the following: 

◇ There are various volume plugins that allow 
Kubernetes/OpenShift to interface with different types 
of storage (e.g. cloud storage, network storage)

◇ There are two methods for creating persistent storage: 
static provisioning and dynamic provisioning. We’ll 
be focusing on the latter

◇ A few resource types running in the cluster:
￭ Persistent Volumes
￭ Persistent Volume Claims
￭ Storage Classes



Dynamic Provisioning
The workflow for dynamically provisioning storage is as follows:

1. An administrator sets up some storage, then defines a storage 
class (SC) that describes the storage

2. A user creates a persistent volume claim (PVC) to request some 
storage of a given size, access type, and SC

3. A persistent volume (PV) is dynamically created of the requested 
size on some storage that matches the SC

4. The matched PV is then bound to the PVC and can be used by the 
user in pods.

The data in the PV persists beyond the lifecycle of the pod. When the 
PVC is deleted, the PV is released and dealt with as defined by the SC 
(e.g. is deleted)

⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬡ ⬡ ⬡ ⬡ ⬡
Deployment & Usage



⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬡ ⬡ ⬡ ⬡
Deployment & Usage

Dynamic Provisioning
apiVersion: storage.k8s.io/v1beta1
kind: StorageClass
metadata:
  name: gluster
provisioner: kubernetes.io/glusterfs
parameters:
  endpoint: "heketi-storage-endpoints"
  resturl: "http://10.47.0.1:8080"
  restuser: "joe"
  restuserkey: "My Secret Life"

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: gluster1
 annotations:
   volume.beta.kubernetes.io/storage-class: gluster
spec:
 accessModes:
  - ReadWriteMany
 resources:
   requests:
     storage: 5Gi

Persistent
Volume

12

34

Storage

AdminUser



GlusterFS Storage
For hyper-converged GlusterFS storage, we also require a 
few additional resources:

◇ Endpoints: describes the list of IP addresses of the 
GlusterFS nodes, which can change over time

◇ Service: provides consistent access to the endpoints

And here are some configuration parameters within our SC:
resturl: “http://127.0.0.1:8081”
clusterid: “630372ccdc720a92c681fb928f27b53f”
restuser: “admin”
secretName: “heketi-secret”
gidMin: “40000”
gidMax: “50000”

⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬡ ⬡ ⬡
Deployment & Usage



Full Hyper-Convergence
Now, both GlusterFS and heketi run in containers on your 
Kubernetes or OpenShift cluster.
◇ Requires some additional administrative changes, but 

greatly reduces hardware costs

◇ Applications have native access to GlusterFS-backed 
storage via heketi

◇ The GlusterFS containers don’t have to run on all 
nodes, they can be set to run only on nodes that can 
fulfill its storage needs

◇ Easy to scale out

⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬡ ⬡
Deployment & Usage



DEMOS!
Sorry online readers. ;)

⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬡
Deployment & Usage



Thanks!
Find Ashiq at:
◇ @MohamedAshiqrh 

on GitHub
◇ mliyazud@redhat.com

Find José at:
◇ @jarrpa on GitHub 

and Twitter
◇ jarrpa@redhat.com

Projects:
◇ GlusterFS - https://www.gluster.org
◇ heketi - https://github.com/heketi/heketi
◇ https://github.com/gluster/gluster-kubernetes
◇ https://github.com/gluster/gluster-containers

⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢ ⬢

https://www.gluster.org
https://github.com/heketi/heketi
https://github.com/gluster/gluster-kubernetes
https://github.com/gluster/gluster-kubernetes
https://github.com/gluster/gluster-containers
https://github.com/gluster/gluster-containers

