
Purely Functional GPU Programming with
Futhark

Troels Henriksen (athas@sigkill.dk)

Computer Science
University of Copenhagen

February 4th 2017

Agenda

The Problem
Modern hardware can handle (and requires) tens to hundreds of
thousands of parallel threads. The human mind cannot handle
this.

The Solution
Functional array programming is a restricted programming
paradigm that performs well in practice and is easy to reason
about (for some problems).

Agenda:
1. Array programming with Futhark
2. Inter-operability (with Python)
3. GPU performance compared to hand-written code

Agenda

The Problem
Modern hardware can handle (and requires) tens to hundreds of
thousands of parallel threads. The human mind cannot handle
this.

The Solution
Functional array programming is a restricted programming
paradigm that performs well in practice and is easy to reason
about (for some problems).

Agenda:
1. Array programming with Futhark
2. Inter-operability (with Python)
3. GPU performance compared to hand-written code

Agenda

The Problem
Modern hardware can handle (and requires) tens to hundreds of
thousands of parallel threads. The human mind cannot handle
this.

The Solution
Functional array programming is a restricted programming
paradigm that performs well in practice and is easy to reason
about (for some problems).

Agenda:
1. Array programming with Futhark
2. Inter-operability (with Python)
3. GPU performance compared to hand-written code

Two Kinds of Parallelism

Task parallelism is the simultaneous execution of different
functions across the same or different datasets:

spawn thread (f , x)
spawn thread (g , y)

Data parallelism is the simultaneous execution of the same
function across the elements of a dataset:

map f [v0, v1, . . . , vn−1] = [f v0, f v1, . . . , f vn−1]

Array programming is in the latter category.

Array Programming

Programs are expressed as bulk operations on arrays.
In Python with Numpy:

>>> import numpy as np
>>> a = np.arange(10)
>>> b = a * 2
>>> sum(a*b)
570

Popular because it resembles mathematics.

Old—first seen in APL from 1964:

a _ 10
b _ a#2
+/a#b

Less popular.

Array Programming

Programs are expressed as bulk operations on arrays.
In Python with Numpy:

>>> import numpy as np
>>> a = np.arange(10)
>>> b = a * 2
>>> sum(a*b)
570

Popular because it resembles mathematics.
Old—first seen in APL from 1964:

a _ 10
b _ a#2
+/a#b

Less popular.

Futhark at a Glance
Small eagerly evaluated pure functional language with
data-parallel looping constructs. Syntax is a combination of C,
SML, and Haskell.

Data-parallel loops
fun add two (a : [n] i32) : [n] i32 = map (+ 2) a
fun sum (a : [n] i32) : i32 = reduce (+) 0 a
fun sumrows (as : [n] [m] i32) : [n] i32 = map sum as

Sequential loops
fun main (n : i32) : i32 =

loop (x = 1) = f o r i < n do
x ∗ (i + 1)

i n x

Array Construction
i o t a 5 = [0 ,1 ,2 ,3 ,4]
r e p l i c a t e 3 1337 = [1337 , 1337 , 1337]

Computing the Mandelbrot Set

The root of those pretty visuals is calling this function (here in
Python) with a bunch of complex numbers:

fun d ive rgence (c , d) =
i = 0
z = c
whi le i < d and dot (z) < 4 .0 :

z = c + z ∗ z
i = i + 1

r e t u r n i

Mandelbrot in Numpy1

def mandelbrot numpy (c , d) :
output = np . ze ros (c . shape)
z = np . ze ros (c . shape , np . complex64)
f o r i t i n range (d) :

notdone =
np . l e s s (z . r e a l ∗ z . r e a l + z . imag∗ z . imag , 4 .0)

output [notdone] = i t
z [notdone] = z [notdone]∗∗2 + c [notdone]

r e t u r n output

Problems
Control flow obscured.
Always runs for maxiter iterations.
Lots of memory traffic - three arrays written for every
iteration of loop.

1https://www.ibm.com/developerworks/community/blogs/
jfp/entry/How_To_Compute_Mandelbrodt_Set_Quickly

https://www.ibm.com/developerworks/community/blogs/jfp/entry/How_To_Compute_Mandelbrodt_Set_Quickly
https://www.ibm.com/developerworks/community/blogs/jfp/entry/How_To_Compute_Mandelbrodt_Set_Quickly

Mandelbrot in Futhark

fun d ive rgence (c : complex) (d : i32) : i32 =
loop ((z , i) = (c , 0)) = whi le i < d &&

dot (z) < 4 .0 do
(addComplex (c , multComplex (z , z)) ,

i + 1)
i n i

fun mandelbrot (cs s : [n] [m] complex) (d : i32) : [n] [m] i32 =
map (\ cs −>

map (\ c −> d ive rgence c d)
cs)

cs s

Only one array written, at the end.
while loop terminates when the element diverges.

Mandelbrot speedup on GPU compared to sequential
implementation in C

 0

 2

 4

 6

 8

 10

 12

 100 200 300 400 500 600 700 800 900 1000

S
p
e
e
d
u
p

Width and height

Numpy-style

 0

 50

 100

 150

 200

 250

 300

 350

 100 200 300 400 500 600 700 800 900 1000

S
p
e
e
d
u
p

Width and height

Futhark-style

Moral: The vectorised style can sacrifice a lot of potential
performance.

Running a Futhark Program

Define contrived entry point
fun main (n : i32) (m: i32) (d : i32) : i32 =

l e t cs s = make complex numbers n m
l e t escapes = mandelbrot cs s d
i n reduce (+) 0 (reshape (n∗m) escapes)

Creates some arbitrary complex numbers, computes their
divergence, and sums the results.
Futhark is a pure language and cannot read input or write
results itself.
When launching a Futhark program, we must indicate an
entry point and input data.

Compile to sequential code
$ fu tha rk−c mandelbrot . f u t −o mandelbrot−c
$ echo 10000 10000 100 | \

. / mandelbrot−c −t / dev / s tdout
611240
999901 i32

Compile to parallel (GPU) code
$ fu tha rk−opencl mandelbrot . f u t −o mandelbrot−opencl
$ echo 10000 10000 100 | \

. / mandelbrot−opencl −t / dev / s tdout
7550
999901 i32

Advantage
80× speedup of parallel over sequential execution.

Compile to sequential code
$ fu tha rk−c mandelbrot . f u t −o mandelbrot−c
$ echo 10000 10000 100 | \

. / mandelbrot−c −t / dev / s tdout
611240
999901 i32

Compile to parallel (GPU) code
$ fu tha rk−opencl mandelbrot . f u t −o mandelbrot−opencl
$ echo 10000 10000 100 | \

. / mandelbrot−opencl −t / dev / s tdout
7550
999901 i32

Advantage
80× speedup of parallel over sequential execution.

How OpenCL Works

The CPU uploads code and
data to the GPU, queues
execution, and copies back
results.
Observation: the CPU code
is all management and
bookkeeping and does not
need to be particularly fast.

Sequential CPU
program

Parallel GPU
program

How Futhark Becomes Useful
We can generate the CPU code in whichever language the rest of
the user’s application is written in. This presents a convenient and
conventional API, hiding the fact that GPU calls are happening
underneath.

How OpenCL Works

The CPU uploads code and
data to the GPU, queues
execution, and copies back
results.
Observation: the CPU code
is all management and
bookkeeping and does not
need to be particularly fast.

Sequential CPU
program

Parallel GPU
program

How Futhark Becomes Useful
We can generate the CPU code in whichever language the rest of
the user’s application is written in. This presents a convenient and
conventional API, hiding the fact that GPU calls are happening
underneath.

Compiling Futhark to Python+PyOpenCL

$ futhark-pyopencl --library mandelbrot.fut

This creates a Python module mandelbrot.py which we can
use as follows:

$ python
>>> import mandelbrot
>>> m = mandelbrot . mandelbrot ()
>>> m. main (1 0 0 , 100 , 255)
25246
>>> m. main (1000 , 1000 , 300)
299701

Good for all your mandelbrot summing needs.

Or, we could have our Futhark program return an array containing
pixel colour values, and use Pygame to blit it to the screen...

Compiling Futhark to Python+PyOpenCL

$ futhark-pyopencl --library mandelbrot.fut

This creates a Python module mandelbrot.py which we can
use as follows:

$ python
>>> import mandelbrot
>>> m = mandelbrot . mandelbrot ()
>>> m. main (1 0 0 , 100 , 255)
25246
>>> m. main (1000 , 1000 , 300)
299701

Good for all your mandelbrot summing needs.
Or, we could have our Futhark program return an array containing
pixel colour values, and use Pygame to blit it to the screen...

Performance

This is where you should stop trusting me!

No good objective criterion for whether a language is “fast”.
Best practice is to take benchmark programs written in other
languages, port or re-implement them, and see how they
behave.

Performance

This is where you should stop trusting me!

No good objective criterion for whether a language is “fast”.
Best practice is to take benchmark programs written in other
languages, port or re-implement them, and see how they
behave.

Speedup Over Hand-Written Rodinia OpenCL Code

Backprop
CFD

HotSpot
K-means

0

2

4

6

Sp
ee

du
p 4.3

4

0.8
4

0.8
0

2.7
6

2.1
1

0.8
5

4.4
1

1.0
6

GTX 780 W8100

LavaMD
Myocyte

NN
Pathfinder

SRAD
0

2

4

6

Sp
ee

du
p

0.8
0

4.1
2

17
.91

2.6
2

1.3
52.1

8

5.1
5

2.2
5 3.2

6

GTX 780 W8100

Summary

Futhark is a small high-level functional data-parallel
language with a GPU-targeting optimising compiler.
Can be integrated with existing languages and applications.
Performance is okay.

Questions?

Website https://futhark-lang.org

Code https://github.com/HIPERFIT/futhark

Benchmarks https:
//github.com/HIPERFIT/futhark-benchmarks

https://futhark-lang.org
https://github.com/HIPERFIT/futhark
https://github.com/HIPERFIT/futhark-benchmarks
https://github.com/HIPERFIT/futhark-benchmarks

