
TUTORIAL
MY FIRST HARDWARE DESIGN

Tristan Gingold - tgingold@free.fr - FOSDEM’17

mailto:tgingold@free.fr

IT’S A TALK ABOUT
HARDWARE!

Things like
that…

There are many talks
at FOSDEM about software.
Try a different room

IT’S A TALK ABOUT
CHIP DESIGN

• This

This

This is a PCB
(Printed Circuit Board)
KiCad is a tool to design
boards, you also need
electronic knowledge

MORE SPECIFICALLY,
DIGITAL CHIPS

Analog
chipNumeric

chip

See the difference ?

DESIGNING AN IC IS
COMPLEX…

Netlist

Power Route

Place

Layout

Cells

X-talk

Clock
domains DRC

Timing

DFT

LVS

STA

MasksDouble patterning

SCE

There aren’t many OSS
tools for ASICs.
qflow
magic VLSI

… AND VERY EXPENSIVE

ASML lithography machine
Expect $$$ for the first chip…

BUT SOME ARE
PROGRAMMABLE!

Normal chip FPGA
There are other kinds of
programmable circuits:
Gate array
CPLD
…

FPGA ARCHITECTURE

Programmable
pad:
Direction
Strength
Level…

Programmable
logic (LUT)

Programmable
switch box

That’s a very simple view…
Most FPGAs also have PLL, memories, multipliers, or even SERDES/PCI-e blocks.
See FPGA databooks

DIGITAL IS ABOUT 0 AND 1
That’s simple !
Assuming you
know about
binary
computation

For analog design,
see gnucap or spice

(There are always
analog parts in a
circuit)

DIGITAL IS ABOUT LOGIC
BASIC OPERATIONS

bbc.co.uk

InputsInputsInputs

NOT gate
D = ~A OR gate

Z = D | E

Output

AND gate
D = B & C

http://bbc.co.uk

COMBINE THEM!

Q = A ^ B

Symbol for XOR gate

wikipedia.org

http://wikipedia.org

OR DO MATH (ONE BIT)

Q = A ^ B
 = A + B
 = A ~= B

wikipedia.org

A B Q
0 0 0
0 1 1
1 0 1
1 1 0

http://wikipedia.org

THE ADDER

S : SUM
C : CARRY

wikipedia.org

Full Adder

http://wikipedia.org

MULTIPLE BIT ADDER

S = A + B

There are more efficient way to design large adders
Search for Digital Logic Architecture

IF YOU CAN ADD,
YOU CAN MULTIPLY!

A3

0 0 0 0 B0

0

A2 A1 A0

A3
B1

0

A2 A1 A0

A3
B2

0

A2 A1 A0

A3
B3

0

A2 A1 A0

P0P1P2P3P4P5P6P7

P = A * B

There are more efficient way
to design multipliers

YOU CAN DESIGN
ANY LOGICAL/ARITH FUNCTION

F()

Inputs

Outputs

Well, many functions…
But this is not very efficient (can take a lot of gates)

MORE POWERFUL:
RECURSION!

F()

Inputs

Outputs

In math,
recursion is very powerful.

In digital design,
it doesn’t work directly!

TIMING
SYNCHRONISATION

wikipedia.org

Do you remember the full adder ?

It takes time for a signal to propagate through gates.
(due to capacities).
So the arrival times at S and Cout differ.

http://wikipedia.org

TIMING DIAGRAM

+1

What you
expect:

What you
get:

Outputs are not available at the same time.
Thanks to http://wavedrom.com/editor.html

http://wavedrom.com/editor.html

SYNCHRONOUS DESIGN
You can try to balance paths, but:
•It’s very hard
•propagation time depends on too many factors

You can use a logic that is not affected by delay variation
(like gray code), but:
•works only in some cases.

Rule #1:
no direct loop/feedback

So how to do ?

SYNCHRONOUS DESIGN

+1

clk

Flip Flop: update output on rising edge of the clock

Clock

AB

Clean

DIGITAL DESIGN
It’s a mix of:
•logic gates
•flip flops

It is possible to use schematic editors, but
•tedious
•doesn’t scale well

Use an HDL
Hardware Description Language
I will use VHDL

There are other way to synchronise
(latch, falling edge, double edge…)

MY FIRST DESIGN
BLINKING LEDS

latticesemi.com

Using OSS tools:
•ghdl
•yosys
•arachne-pnr
•iceStorm

Target: Lattice iCEstick
~ 22 euros
Supported by OSS tools

Leds

http://latticesemi.com

VHDL: EXTERNAL INTERFACE
boilerplate

Comment
(to not forget
 leds position)

Input: clock
(externally generated 3Mhz)

outputs: leds

interface

INTERNALSInternals
Internal

wire

Process:
concurrent
execution,
triggered on
clk

concurrent
 assignments

There are many VHDL or
 Verilog tutorials on the web.

SYNTHESIS
Translating (or compiling) sources to gates (netlist)

First, analysing sources:

Synthesis: output fileunit name

synthesis script

frontend command

PLACE & ROUTE
Allocate resources on the FPGA

device input

output place file

IC pin #

PROGRAM
Write into the FPGA

flashUSB interface

Create the binary file:

Write to flash:

The FPGA is automatically reset and then load the new config

TOOLS USED
Synthesis:
http://www.clifford.at/yosys/

VHDL front-end:
https://github.com/tgingold/ghdlsynth-beta
https://github.com/tgingold/ghdl

Place and route:
https://github.com/cseed/arachne-pnr

iCE40 tools:
http://www.clifford.at/icestorm/

http://www.clifford.at/yosys/
https://github.com/tgingold/ghdlsynth-beta
https://github.com/tgingold/ghdl
https://github.com/cseed/arachne-pnr
http://www.clifford.at/icestorm/

QUESTIONS ?

