
Device Tailored Compositors
with the QtWayland-Compositor Framework

Andreas Cord-Landwehr

February 5, 2017
FOSDEM, Brussels

About Me
IRC-nick: CoLa
KDE developer since ≈ 2010
did PhD in algorithmic game theory
at Paderborn University ↗
now working as developer at CLAAS E-Systems in department for displays and
operator panels for big agriculture machines

This talk is about the QtWayland Compositor Framework:
1 topic is between my KDE and my professional work
2 practical introduction into how to create your own compositor
3 the talk shall make you eager to experiment with the QtWaylandCompositor
4 want to convince you that there is a new solution for many embedded device needs

Introduction
About Me & the Talk

2 Device Tailored Wayland Compositors / Andreas Cord-Landwehr

The Red Thread
Let’s say, I need a terminal for helping me in the kitchen. . .

3 Device Tailored Wayland Compositors / Andreas Cord-Landwehr

several applications shall run on the device
cooking eggs timer app
tea timer app
current time app

seemless UI between the application windows
swipe animation for switching applications
want to use a standard embedded Linux based device with
3D acceleration (e.g. Raspberry Pi)

→ we need a (Wayland) compositor
→ we can use QtQuick

Yes, the above can be achieved in a much simpler way, but by exchanging these trivial
apps with eg. internet radio, navigation system etc. and you get exactly what modern
cars put onto their devices today.

Setting & Requirements

4 Device Tailored Wayland Compositors / Andreas Cord-Landwehr

The remainder of the talk: how QtWayland helps to build this

Interaction Concept for the Kitchen Device
Something your designer might come up with

5 Device Tailored Wayland Compositors / Andreas Cord-Landwehr

Wayland is a protocol specifying the communication between
a compositor (display server) and its clients (applications with
their windows)

in the embedded world, Wayland is the already established successor of X
there are several Wayland compositor implementations:

Weston: the reference implementation
for desktop environments: KWin, Mutter, Enlightment . . .
some propriatary compositors by device vendors exist

protocol extensions add further functionality to the Wayland protocol:
specified in XML files, code generated via wayland-scanner

available shells:
wl-shell default protocol for window handling, already introduced with Wayland 1.0

xdg-shell successor of wl_shell with implementations provided by individual compositors
ivi-shell protocol specifically for special automative form factors (IVI = in-vehicle

infotainment), used via the ivi-controller protocol extension

What is Wayland, again?
A much too short answer for this question.

6 Device Tailored Wayland Compositors / Andreas Cord-Landwehr

http://doc.qt.io/qt-5/qtwaylandcompositor-index.html

possible to write a compositor in just QML
→ QML is declarative language especially used for UI development on embedded
devices/smartphones/touch applications
supports Qt/C++ wrapper generation for Wayland protocol extensions
supports multiple screen outputs
provides wl-shell, xdg-shell and ivi-shell protocols
History:

since many years, there was an internal (but cumbersome to use) API
Compositor API rewritten for Qt 5.7 (tech preview)
Stable API since Qt 5.8

Alternatives: What about using the IVI-Shell extension in kitchen scenario?
protocol only suited for very static settings
touch gestures and window animations hard to implement

The Qt Wayland Compositer API

7 Device Tailored Wayland Compositors / Andreas Cord-Landwehr

http://doc.qt.io/qt-5/qtwaylandcompositor-index.html

Components:
apps Qt application running as Wayland client (with Qt: running on

Wayland QPA with -platform wayland)
compositor application acting as Wayland Server

shell (optional, but IMO very reasonable) application that handles the more
complex compositing logic and encapsulates all Wayland
communication; eg. filters and sorts all safety relvant notifications from
your applications

Note: in this talk I will stick to the left variant

Possible System Architectures for my Kitchen Device

8 Device Tailored Wayland Compositors / Andreas Cord-Landwehr

One-Slide Wayland Compositor

9 Device Tailored Wayland Compositors / Andreas Cord-Landwehr

1 WaylandCompositor {
2 WaylandOutput { . . . }
3 WlShel l {
4 onWlShel lSur faceCreated : {
5 // handle s h e l l S u r f a c e o b j e c t
6 l i s t M o d e l . append ({ " s h e l l S u r f a c e " : s h e l l S u r f a c e }) ;
7 }
8 }
9 }

WaylandCompositor
representation of the compositor
usually the root object of the scene
always should have output and shell extension

Shell Extension
the protocol interface that gives access to the surfaces
WlShell and XdgShell are supported
handle the onWlSurfaceCreated() signal

Essential Components (1/2)
The Compositor and the Shell

10 Device Tailored Wayland Compositors / Andreas Cord-Landwehr

1 WaylandOutput {
2 compositor : demoCompositor
3 sizeFollowsWindow : t rue
4 window : Window {
5 width : 800 ; he ight : 400 ; v i s i b l e : t rue
6 ListView {
7 anchors . f i l l : parent
8 model : ListModel { id : l i s t M o d e l }
9 o r i e n t a t i o n : ListView . Hor i zonta l

10 d e l e g a t e : S h e l l S u r f a c e I t e m {
11 s h e l l S u r f a c e : model . s h e l l S u r f a c e
12 onSurfaceDestroyed : { l i s t M o d e l . remove (index) }
13 } } } }

ShellSurfaceItem and QWaylandQuickItem
wrapper around shell surfaces to handle them like ordinary QtQuick Items
visibility and input behavior follows typical QtQuick mechanisms

Output
manages rectangular output region in which content can be shown
compositor can have multiple outputs

Essential Components (2/2)
The Surface Items and the Output

11 Device Tailored Wayland Compositors / Andreas Cord-Landwehr

Code: https://github.com/cordlandwehr/fosdem-2017-talk-qtwayland/tree/master/demo

The Custom Protocol Extension

1 < p r o t o c o l >
2 < i n t e r f a c e name=" demo_extension " v e r s i o n=" 1 " >
3
4 < reques t name=" n o t i f i c a t i o n " >
5 < d e s c r i p t i o n summary=" Example N o t i f i c a t i o n Event " >
6 Example r eque s t from c l i e n t to s e r v e r
7 </ d e s c r i p t i o n >
8
9 < arg name=" text " type=" s t r i n g " />

10 </ reques t >
11 </ i n t e r f a c e >
12 </ p r o t o c o l >

Protocol Extension for Alarm Notifications (1/2)
How to add your own custom Wayland protocol?

12 Device Tailored Wayland Compositors / Andreas Cord-Landwehr

https://github.com/cordlandwehr/fosdem-2017-talk-qtwayland/tree/master/demo

On the Compositor Side
1 create QWaylandCompositorExtensionTemplate derived protocol wrapper
2 use qtwayland-scanner to generate Qt & C++ binding classes for protocol
3 add CustomExtension in the WaylandCompositor element in the QtQuick context
and connect to signals/use methods for sending data

On the Client (Application) Side
1 create QWaylandClientExtensionTemplate derived protocol wrapper
2 use qtwayland-scanner to generate Qt & C++ binding classes for protocol
3 create client protocol wrapper instance and use it

Protocol Extension for Alarm Notifications (2/2)
How to add your own custom Wayland protocol?

13 Device Tailored Wayland Compositors / Andreas Cord-Landwehr

Demo
Everything put together with some QtQuick UI sugar.

14 Device Tailored Wayland Compositors / Andreas Cord-Landwehr

the QtWayland Compositor framework drastically simplifies the creation of a
compositor for a specific/special UX requirement
prototyping such a compositor is just a matter of a day
window compositing becomes UI design:

when a surface looks and behaves like a QtQuick item, you can handle it like a
QtQuick item. . .
no special Wayland developer needed but “just” a QtQuick UI developer can develop
your compositor tailored for your individual form factor

→ try it out!

Demo and all sources of this talk are available here:
https://github.com/cordlandwehr/fosdem-2017-talk-qtwayland/tree/master/demo

Conclusion

15 Device Tailored Wayland Compositors / Andreas Cord-Landwehr

https://github.com/cordlandwehr/fosdem-2017-talk-qtwayland/tree/master/demo

Johan’s “The Qt Wayland Compositor API” introduction talk at QtCon 2016
https://conf.qtcon.org/en/qtcon/public/events/392

Online Help
http://doc.qt.io/qt-5/qtwaylandcompositor-index.html

IRC at freenode: #qt-lighthouse

References

16 Device Tailored Wayland Compositors / Andreas Cord-Landwehr

https://conf.qtcon.org/en/qtcon/public/events/392
http://doc.qt.io/qt-5/qtwaylandcompositor-index.html

Thank you for your attention!

Andreas Cord-Landwehr
E-mail: cordlandwehr@kde.org

mailto:cordlandwehr@kde.org

