
Deploying Ceph clusters with Salt

FOSDEM 17 – Brussels – UA2.114 (Baudoux)

Jan Fajerski
Software Engineer
jfajerski@suse.com

2

Saltstack

“Software to automate the management and
configuration of any infrastructure or application at
scale.”

● Configuration management and remote execution
● Based on Python, Jinja and ZeroMQ
● Master applies state to Minions
● States define dependencies as DAG

3

Ceph

“Ceph is a unified, distributed storage system designed
for excellent performance, reliability and scalability.”

● Provides block, object and file system storage
● Scalable, fault-tolerant and self healing
● Designed to run on commodity hardware

4

DeepSea

● Collection of Salt files for Ceph cluster creation
and management

● Goals:
● Start after OS installed and salt setup
● Automate hardware discovery
● Find problems before they are deployed
● Manage complete cluster life cycle

● Open source – GPLv3
● Status: discovery, deployment and basic

management works
Bug reports and contributions welcome

https://github.com/SUSE/DeepSea

5

DeepSea – basic workflow

● Install OS, salt, accept minion key, install DeepSea
● Run DeepSea stages:

● 0 – Preparation: sync salt, update kernel
● 1 – Discovery: query minions hardware & network, write config

fragments
● Manual step: create your policy.cfg which governs your cluster

topology
● 2 – Configuration: assemble configuration and push to

minions
● 3 – Deployment: install ceph, deploy configuration, start Ceph
● 4 – Services: start extra ceph services: MDS, rgw, iscsi

● Can be much more complex
● Stage 5 implements removal of components

6

DeepSea

● Stages are orchestration files
salt-run state.orch ceph.stage.n

● These call salt states with correct targeting based
on role assignments

● States can be called manually

● Common pattern – init.sls redirection:
include:

- .{{ salt['pillar.get']('mon_init', 'default') }}

● Requires a minion on the master node

7

Let’s try it

8

Demo Cluster

● Cluster of 10 kvm machines
● 1 GB RAM, 1 CPU, 2 network interfaces
● OSD nodes in two flavours

● 4 OSD nodes with 5 x 5 GB drives
● 2 OSD nodes with 1 x 1 GB drive + 5 x 5 GB drives
● 32 drives overall

● Convieniently named:
● mon[1,2,3]
● data[1 – 6]
● admin

9

Stage 0 - Preparation

● make sure all minions are in the same state
● is still rather SUSE specific – being worked on
● can be skipped
● Sync salt, add repos to zypper, install a few

packages, updates
● Might reboot your minions...including the master

10

Stage 1 - Discovery

● Query minions for storage hardware and network
connections

● Write config fragments to
/src/pillar/ceph/proposals/
● Cluster assignment
● Role assignment
● Some ceph configuration
● Storage profiles

● ~ per fragment and minion one file

11

12

13

Policy.cfg

● Central configuration file
● Choose which config fragments to use
● Supports globs, list slicing and regex
● Order is important – options can be overwritten

14

15

16

17

18

19

20

21

Stage 2 - Configuration

● Pulls in config fragments as specified in
policy.cfg

● Based on stack.py – merges yaml files
(included since 2016.3)

● Option to customize specific options
● /srv/pillar/ceph/stack/default – default created by DeepSea
● /srv/pillar/ceph/stack – custom options for specific minions

● Check config with salt $minion pillar.items

22

Stage 3 - deployment

● Validates setup
● Authenticate keyrings
● Install ceph
● Creates MON cluster
● Creates OSDs
● Creates pool(s)

23

24

25

Customize a deployment

26

Choose profile

● Choose profile with osd journal on separate
partition

● DeepSea will generate this for SSD/HDD hardware
● Can also be hand-crafted

27

On real hardware:

28

Behavior customisation

● Demo VM setup is not a typical Ceph deployment
● Behavior is easily altered – redirection pattern
● Add custom method for OSD deployment
● Configure desired method in the pillar

29

30

31

Beyond deployment

32

Stage 4 -services

● Add additional service
● MDS and cephfs
● ISCSI
● Rados gateway
● NFS Ganesha
● Client nodes

33

Stage 5 - removal

● Nodes will eventually be decommissioned
● Remove minion from policy.cfg
● Run stages 2, [3, 4] and 5

34

Thank you! Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

