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Saltstack

“Software to automate the management and 
configuration of any infrastructure or application at 
scale.”

● Configuration management and remote execution
● Based on Python, Jinja and ZeroMQ
● Master applies state to Minions
● States define dependencies as DAG
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Ceph

“Ceph is a unified, distributed storage system designed 
for excellent performance, reliability and scalability.”

● Provides block, object and file system storage
● Scalable, fault-tolerant and self healing
● Designed to run on commodity hardware
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DeepSea

● Collection of Salt files for Ceph cluster creation 
and management

● Goals:
● Start after OS installed and salt setup
● Automate hardware discovery
● Find problems before they are deployed
● Manage complete cluster life cycle

● Open source – GPLv3
● Status: discovery, deployment and basic 

management works
Bug reports and contributions welcome

https://github.com/SUSE/DeepSea



5

DeepSea – basic workflow

● Install OS, salt, accept minion key, install DeepSea
● Run DeepSea stages:

● 0 – Preparation: sync salt, update kernel
● 1 – Discovery: query minions hardware & network, write config 

fragments
● Manual step: create your policy.cfg which governs your cluster 

topology
● 2 – Configuration: assemble configuration and push to 

minions
● 3 – Deployment: install ceph, deploy configuration, start Ceph
● 4 – Services: start extra ceph services: MDS, rgw, iscsi

● Can be much more complex
● Stage 5 implements removal of components
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DeepSea

● Stages are orchestration files 
salt-run state.orch ceph.stage.n

● These call salt states with correct targeting based 
on role assignments

● States can be called manually

● Common pattern – init.sls redirection:
include:

- .{{ salt['pillar.get']('mon_init', 'default') }}

● Requires a minion on the master node
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Let’s try it
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Demo Cluster

● Cluster of 10 kvm machines
● 1 GB RAM, 1 CPU, 2 network interfaces
● OSD nodes in two flavours

● 4 OSD nodes with 5 x 5 GB drives
● 2 OSD nodes with 1 x 1 GB drive + 5 x 5 GB drives
● 32 drives overall

● Convieniently named:
● mon[1,2,3]
● data[1 – 6]
● admin
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Stage 0 - Preparation

● make sure all minions are in the same state
● is still rather SUSE specific – being worked on
● can be skipped
● Sync salt, add repos to zypper, install a few 

packages, updates
● Might reboot your minions...including the master
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Stage 1 - Discovery

● Query minions for storage hardware and network 
connections

● Write config fragments to 
/src/pillar/ceph/proposals/
● Cluster assignment
● Role assignment
● Some ceph configuration
● Storage profiles

● ~ per fragment and minion one file
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Policy.cfg

● Central configuration file
● Choose which config fragments to use
● Supports globs, list slicing and regex
● Order is important – options can be overwritten
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Stage 2 - Configuration

● Pulls in config fragments as specified in 
policy.cfg

● Based on stack.py – merges yaml files
(included since 2016.3)

● Option to customize specific options
● /srv/pillar/ceph/stack/default – default created by DeepSea
● /srv/pillar/ceph/stack – custom options for specific minions

● Check config with salt $minion pillar.items
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Stage 3 - deployment

● Validates setup
● Authenticate keyrings
● Install ceph
● Creates MON cluster
● Creates OSDs
● Creates pool(s)
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Customize a deployment
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Choose profile

● Choose profile with osd journal on separate 
partition

● DeepSea will generate this for SSD/HDD hardware
● Can also be hand-crafted
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On real hardware:
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Behavior customisation

● Demo VM setup is not a typical Ceph deployment
● Behavior is easily altered – redirection pattern
● Add custom method for OSD deployment
● Configure desired method in the pillar
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Beyond deployment
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Stage 4 -services

● Add additional service
● MDS and cephfs
● ISCSI
● Rados gateway
● NFS Ganesha
● Client nodes
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Stage 5 - removal

● Nodes will eventually be decommissioned
● Remove minion from policy.cfg
● Run stages 2, [3, 4] and 5
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Thank you! Questions?
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