

Cloud object storage in Ceph

Orit Wasserman owasserm@redhat.com Fosdem 2017

AGENDA

- What is cloud object storage?
- Ceph overview
- Rados Gateway architecture
- Questions

Cloud object storage

Block storage

- Data stored in fixed blocks
- No metadata
- Fast
- Protocols:
 - SCSI
 - FC
 - SATA
 - ISCSI
 - FCoE

File system

- Users
- Authentication
- Metadata:
 - ownership
 - Permissions/ACL
 - Creation/Modification time
- Hierarchy: Directories and files
- Files are mutable
- Sharing semantics
- Slower
- Complicate

Protocols:

- Local: ext4,xfs, btrfs, zfs, NTFS, ...
- Network: NFS, SMB, AFP

Object storage

- Restful API (cloud)
- Flat namespace:
 - Bucket/container
 - Objects
- Users and tenants
- Authentication
- Metadata:
 - Ownership
 - ACL
 - User metadata
- Large objects
- · Objects are immutable

- Cloud Protocols:
 - S3
 - Swift (openstack)
 - Google Cloud storage

Create bucket

PUT /{bucket} HTTP/1.1 Host: cname.domain.com x-amz-acl: public-read-write

Authorization: AWS {access-key}:{hash-of-header-and-secret}

Get bucket

GET /{bucket}?max-keys=25 HTTP/1.1 Host: cname.domain.com

Delete bucket

DELETE /{bucket} HTTP/1.1 Host: cname.domain.com

Authorization: AWS {access-key}:{hash-of-header-and-secret}

Create object

PUT /{bucket}/{object} HTTP/1.1

Copy object

PUT /{dest-bucket}/{dest-object} HTTP/1.1
x-amz-copy-source: {source-bucket}/{source-object}

Read object

GET /{bucket}/{object} HTTP/1.1

Delete object

DELETE /{bucket}/{object} HTTP/1.1

Multipart upload

- upload a single object as a set of parts
- Improved throughput
- Quick recovery from any network issues
- Pause and resume object uploads
- Begin an upload before you know the final object size

Object versioning

 Keeps the previous copy of the object in case of overwrite or deletion

Ceph

Cephalopod

Ceph

Ceph

- Open source
- Software defined storage
- Distributed
- No single point of failure
- Massively scalable
- Replication/Erasure Coding
- Self healing
- Unified storage: object, block and file

Ceph architecture

APP

RGW

A web services gateway for object storage, compatible with S3 and Swift **HOST/VM**

RBD

A reliable, fullydistributed block device with cloud platform integration CLIENT

CEPHFS

A distributed file system with POSIX semantics and scaleout metadata management

LIBRADOS

A library allowing apps to directly access RADOS (C, C++, Java, Python, Ruby, PHP)

RADOS

A software-based, reliable, autonomous, distributed object store comprised of self-healing, self-managing, intelligent storage nodes and lightweight monitors

Rados

- Reliable Autonomous Distributed Object Storage
- Replication/Erasure coding
- Flat object namespace within each pool
 - Different placement rules
- Strong consistency (CP system)
- Infrastructure aware, dynamic topology
- Hash-based placement (CRUSH)
- Direct client to server data path

Crush

- Controlled Replication Under Scalable Hashing
- Pseudo-random placement algorithm
- Fast calculation, no lookup
- Ensures even distribution
- Repeatable, deterministic
- Rule-based configuration
 - specifiable replication
 - infrastructure topology aware
 - allows weighting

OSD node

- Object Storage Device
- 10s to 1000s in a cluster
- One per disk (or one per SSD, RAID group...)
- Serve stored objects to clients
- Intelligently peer for replication & recovery

Monitor node

- Maintain cluster membership and state
- Provide consensus for distributed decision-making
- Small, odd number
- These do not serve stored objects to clients

Librados API

- Efficient key/value storage inside an object
- Atomic single-object transactions
 - update data, attr, keys together
 - atomic compare-and-swap
- Object-granularity snapshot infrastructure
- Partial overwrite of existing data
- RADOS classes (stored procedures)
- Watch/Notify on an object

Rados Gateway

Rados Gateway

APP

RGW

A web services gateway for object storage, compatible with S3 and Swift **HOST/VM**

RBD

A reliable, fullydistributed block device with cloud platform integration CLIENT

CEPHFS

A distributed file system with POSIX semantics and scaleout metadata management

LIBRADOS

A library allowing apps to directly access RADOS (C, C++, Java, Python, Ruby, PHP)

RADOS

A software-based, reliable, autonomous, distributed object store comprised of self-healing, self-managing, intelligent storage nodes and lightweight monitors

RGW vs RADOS objects

- RADOS
 - Limited object sizes (4M)
 - Mutable objects
 - Not indexed
 - per-pool ACLs

- RGW
 - Large objects (TB)
 - Immutable objects
 - Sorted bucket listing
 - per object ACLs

Rados Gateway

RESTful OBJECT STORAGE

- Users/Tenants
- Data
 - Buckets
 - Objects
 - Metadata
 - ACLs
- Authentication
- APIs
 - S3
 - Swift
 - NFS

RGW

RGW Components

- Frontend
 - FastCGI external web servers
 - Civetweb embedded web server
- Rest Dialect
 - S3
 - Swift
 - Other API (NFS)
- Execution layer common layer for all dialects

RGW Components

- RGW Rados manages RGW data by using rados
 - object striping
 - atomic overwrites
 - bucket index handling
 - Object classes that run on the OSDs
- Quota handles user or bucket quotas.
- Authentication handle users authentication
- GC Garbage collection mechanism that runs in the background.

RGW objects

- Large objects
- Fast small object access
- Fast access to object attributes
- Buckets can consist of a very large number of objects

RGW objects

OBJECT

HEAD TAIL

- Head
 - Single rados object
 - Object metadata (acls, user attributes, manifest)
 - · Optional start of data
- Tail
 - Striped data
 - 0 or more rados objects

RGW Objects

OBJECT: foo

BUCKET: boo

BUCKET ID: 123

head

123_foo

tail 1

123_28faPd3Z.1

tail 1

123_28faPd3Z.2

RGW bucket index

BUCKET INDEX

Shard	1
Oi iai a	_

aaa abc def (v2) def (v1)

Shard 2

aab
bbb
eee
fff
zzz

RGW object creation

- Update bucket index
- Create head object
- Create tail objects
- All those operations need to be consist

RGW object creation

RGW quota

RGW metadata cache

- Metadata needed for each request:
 - User Info
 - Bucket Entry Point
 - Bucket Instance Info

RGW metadata cache

Multisite environment

multisite

- Implementation as part of the radosgw (in c++)
- Asynchronous (co-routines)
- Active/active support
- Namespaces
- Failover/failback
- Backward compatibility with the sync agent
- Meta data sync is synchronous
- Data sync is asynchronous

More cool features

- Object life cycle
- Object copy
- Bulk operations
- Encryption
- Compression
- Torrents
- Static website
- Metadata search
- Bucket resharding

THANK YOU

Ceph mailing lists:

Ceph-users@ceph.com

ceph-devel@ceph.com

IRC:

Irc.oftc.net #ceph #ceph-devel