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● Block Dirty Bitmaps
● QMP interface and usage
● QMP transactions
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(Things I hope not to stammer through)
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● Incremental backup life-cycle
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● BlockJobs
● Transactions
● Multi-drive Coherency
● Errors
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Overview
(Things I hope not to stammer through)
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● Persistence
● Push vs Pull model backups
● TODOs
Dénouement
● Project Status, Questions and Answers



PROLOGUE

(In which our heroes come to know the enemy)
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Gross.

The Problem
(I just wandered into this talk, what's it about?)

Wednesday
128GiB

● Abysmal storage efficiency
● Clunky, slow
● But admittedly simple and convenient

Tuesday
128GiB

Monday
128GiB

Thursday
128GiB

Friday
128GiB
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Much Better!

The Problem
(I just wandered into this talk, what's it about?)

Monday
128GiB

Tuesday
2GiB

Wednesday
2.5GiB

Thursday
2.21GiB

Friday
1GiB

● Efficient: only copies modified data
● Fast!
● More complicated...?
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Welcome!
(You’re in my world now)

QEMU added preliminary support for incremental 
backups in QEMU 2.4, 2015-08-11.

● (I can’t commit to either US or EU dates, so enjoy this 
ISO one instead)

● Development is ongoing as of 2.8
● Not included as “supported” in a Red Hat product yet

● So, it’s mostly for the brave.
● But we’re nearing feature completion.
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Approach
(Where did we come from; where did we go)

Incremental Live Backups have a storied lineage.
● Jagane Sundar's LiveBackup (2011)

● Separate CLI tools
● Entirely new network protocol
● Ran as an independent thread
● Utilized temporary snapshots for atomicity
● Implemented with in-memory dirty block bitmaps
● Was ultimately not merged
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Approach
(Where did we come from; where did we go)

Fam Zheng's Incremental Backup (2014)
● Also dirty sector bitmap based

● Uses existing HBitmap/BdrvDirtyBitmap primitives
● No new external tooling or protocols
● Managed via QMP
● Implemented simply as a new backup mode
● Can be used with any image format
● Maximizes compatibility with existing backup tools
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Design Goals
(What do we want?)

● Reuse existing primitives as much as possible
● Key structure: 'block driver dirty bitmap'

● Already tracks dirty sectors
● Used for drive mirroring, block migration
● Configurable granularity
● Many bitmaps can be used per-drive
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Design Goals
(What do we want? Efficient Backups!)

● Reuse existing primitives
● Key interface: drive-backup

● Implemented via well-known QMP protocol 
● Used to create e.g. full backups
● Already capable of point-in-time live backups
● Can already export data via NBD
● We merely add a new sync=incremental mode

● ...And a bitmap=<name> argument.
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Design Goals
(When do we want it?)

● Coherency
● Multi-drive point-in-time backup accuracy
● Utilize existing QMP transaction feature

● Persistence
● Bitmaps must survive shutdowns and reboots
● Must not depend on drive data format
● Nor on the backup target format



Incremental Backups: John Snow; FOSDEM 201716

Design Goals
(When do we want it? By 2.9 hopefully!)

● Migration-safe
● Migrating must not reset or lose bitmap data

● Error Handling
● Bitmap data must not be lost on backup failure
● Starting a new full backup is not sufficiently robust

● Integrity
● We must be able to detect desync between 

persistence data and block data



Incremental Backups: John Snow; FOSDEM 201717

Why not use snapshots?
(Saving you time during the Q&A)

“Both offer point-in-time views of data, why not use the 
existing mechanism?”
● No need to parse format-specific snapshots on disk
● We can use any format
● Incremental backups are inert and do not grow

● No IO required to delete incrementals
● We can utilize existing backup frameworks
● Access to QEMU's NBD server



ACT I: BUILDING BLOCKS

(In which our heroes prepare for battle)
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Block Dirty Bitmaps
(Nothing to do with your image search settings)

Before showcasing incrementals, some background:
● BdrvDirtyBitmap is the existing block layer structure 

used to track writes
● Already used for drive-mirror, live block migration
● Implemented using hierarchical bitmap
● Any number can be attached to a drive

● Allows for multiple independent backup regimes
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Block Dirty Bitmaps
(Nothing to do with your image search settings)

Hbitmap hierarchy:
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Block Dirty Bitmaps
(Nothing to do with your image search settings)

Bitmap plurality:

id=drive0

bitmap0

id=drive1

foo4 bar9 FOS DEM



Incremental Backups: John Snow; FOSDEM 201722

Block Dirty Bitmaps - Naming
(A bitmap by any other name would smell as sweet...?)

● Block dirty bitmaps may have names:
● Existing internal usages are anonymous
● The name is unique to the drive
● Bitmaps on different drives can have the same name
● The (node, name) pair is the bitmap ID

● Used to issue bitmap management commands
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Block Dirty Bitmaps - Naming
(A bitmap by any other name would smell as sweet...?)

Bitmap naming:

id=drive0

bitmap0

id=drive1

bitmap1 bitmap0
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Block Dirty Bitmaps - Granularity
(Backups from French Press  to Turkish)

● Block dirty bitmaps have granularities:
● Small granularity – smaller backups*

● Uses more memory
● 1 TiB w/ g=32KiB → 4MiB
● 1 TiB w/ g=128KiB → 1MiB

● Default: 64KiB**
● Attempts to match cluster size
● 64KiB clusters (default) for qcow2



Incremental Backups: John Snow; FOSDEM 201725

Granularities – In Detail
(Tuned like the finest $4 ukulele)

● Bitmaps track writes per-sector
● Configure granularity in bytes
● 64K → 128 sectors (512 bytes/sector)

● The backup engine itself copies out per-cluster
● Currently: non-configurable, 64K clusters

● The file format also has a cluster size
● qcow2 defaults to 64K.

● Conclusion: 64K is probably best (for now)
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Block Dirty Bitmaps - Management
(Bitmap wrangling 101)

We need to manage these bitmaps to make backups.
● Managed via QMP

● Good news if you're a computer!
● Four commands:

● block-dirty-bitmap-add
● block-dirty-bitmap-remove
● block-dirty-bitmap-clear
● query-block
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Block Dirty Bitmaps - Creation
(Let there be... bits!)

● Bitmaps can be created at any time, on any node
● Bitmaps begin recording writes immediately
● Granularity is optional

{ "execute": "block-dirty-bitmap-add",
  "arguments": {
    "node": "drive0",
    "name": "bitmap0",
    "granularity": 131072
  }
}

{ "execute": "block-dirty-bitmap-add",
  "arguments": {
    "node": "drive0",
    "name": "bitmap0",
    "granularity": 131072
  }
}
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Block Dirty Bitmaps - Deletion
(For days when less  is more)

● Can only be deleted when not in use
● Bitmaps are addressed by their (node, name) pair
● Has no effect on backups already made
● Has no effect on other bitmaps or nodes

{ "execute": "block-dirty-bitmap-remove",
  "arguments": {
    "node": "drive0",
    "name": "bitmap0"
  }
}

{ "execute": "block-dirty-bitmap-remove",
  "arguments": {
    "node": "drive0",
    "name": "bitmap0"
  }
}
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Block Dirty Bitmaps - Resetting
(Sometimes we just want a second chance)

● Bitmaps can be cleared of all data
● Primarily for convenience
● Begins recording new writes immediately, like add

{ "execute": "block-dirty-bitmap-clear",
  "arguments": {
    "node": "drive0",
    "name": "bitmap0"
  }
}

{ "execute": "block-dirty-bitmap-clear",
  "arguments": {
    "node": "drive0",
    "name": "bitmap0"
  }
}
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Block Dirty Bitmaps - Querying
(Who are you? Who who, who who?)

Bitmap data can be retrieved via block-query.

{"execute": "query-block", "arguments": {}}

{"return": [{ …
  “device”: “drive0”,
  "dirty-bitmaps": [{
     "status": "active",
     "count": 296704,
     "name": "bitmap0",
     "granularity": 65536 }]
… }]}

{"execute": "query-block", "arguments": {}}

{"return": [{ …
  “device”: “drive0”,
  "dirty-bitmaps": [{
     "status": "active",
     "count": 296704,
     "name": "bitmap0",
     "granularity": 65536 }]
… }]}
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Block Dirty Bitmaps - Querying
(Who are you? Who who, who who?)

Bitmap data can be retrieved via block-query.

{"execute": "query-block", "arguments": {}}

{"return": [{ …
  “device”: “drive0”,
  "dirty-bitmaps": [{
     "status": "active",      (or “frozen”!)
     "count": 296704,
     "name": "bitmap0",
     "granularity": 65536 }]
… }]}

{"execute": "query-block", "arguments": {}}

{"return": [{ …
  “device”: “drive0”,
  "dirty-bitmaps": [{
     "status": "active",      (or “frozen”!)
     "count": 296704,
     "name": "bitmap0",
     "granularity": 65536 }]
… }]}
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Block Dirty Bitmaps - Querying
(Who are you? Who who, who who?)

Bitmap data can be retrieved via block-query.

{"execute": "query-block", "arguments": {}}

{"return": [{ …
  “device”: “drive0”,
  "dirty-bitmaps": [{
     "status": "active",
     "count": 296704, (sectors!)
     "name": "bitmap0",
     "granularity": 65536 }] (2318 clusters)
… }]}

{"execute": "query-block", "arguments": {}}

{"return": [{ …
  “device”: “drive0”,
  "dirty-bitmaps": [{
     "status": "active",
     "count": 296704, (sectors!)
     "name": "bitmap0",
     "granularity": 65536 }] (2318 clusters)
… }]}
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Building Cognitive Dissonance
(Problem Statement 2: Electric Boogaloo)

● QMP commands are not particularly useful alone
● They are not atomic
● Only “safe” when VM is offline
● No cross-drive coherence guarantee
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Incremental Transactions
(Dissonance abated!)

● Bitmap management transactions allow us to— 
● Create full backups alongside a bitmap reset
● Create a full backup alongside a new bitmap
● Reset bitmaps across multiple drives
● Issue a number of incremental backups across 

multiple drives
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Incremental Transactions
(Dissonance abated!)

● Supported transaction actions:
● type:block-dirty-bitmap-add
● type:block-dirty-bitmap-clear

● No transaction needed for remove
● Works in conjunction with type:drive-backup

● For incrementals (multi-drive coherency)
● For full backups

● new incremental chains / sync points



ACT II: LIFE CYCLE

(In which our heroes save time and money)
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Incrementals – Life Cycle

1) Create a new backup chain, or
2) Synchronize an existing backup chain
3) Create the first incremental backup
4) Create subsequent incremental backups

New Bitmap Sync Point 
(Full Backup) Incremental
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Life Cycle – New Chain
(There and backup again)

Example 1: Start a new backup chain atomically

{ "execute": "transaction",
  "arguments": {
    "actions": [
      {"type": "block-dirty-bitmap-add",
       "data": {"node": "drive0", "name": "bitmap0"} },
      {"type": "drive-backup",
       "data": {"device": "drive0",
                "target": "/path/to/full.qcow2",
                "sync": "full", "format": "qcow2"} }
    ]
  }
}

{ "execute": "transaction",
  "arguments": {
    "actions": [
      {"type": "block-dirty-bitmap-add",
       "data": {"node": "drive0", "name": "bitmap0"} },
      {"type": "drive-backup",
       "data": {"device": "drive0",
                "target": "/path/to/full.qcow2",
                "sync": "full", "format": "qcow2"} }
    ]
  }
}
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Life Cycle – New Chain
(There and backup again)

id=drive0
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Life Cycle – New Chain
(There and backup again)

id=drive0
bitmap0
count=0

full.qcow2
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Life Cycle – New Sync Point
(Sunday night maintenance blues)

Example 2: Take an existing bitmap and create a new full 
backup as a synchronization point.

{ "execute": "transaction",
  "arguments": {
    "actions": [
      {"type": "block-dirty-bitmap-clear",
       "data": {"node": "drive0", "name": "bitmap0"} },
      {"type": "drive-backup",
       "data": {"device": "drive0",
                "target": "/path/to/new_full_backup.qcow2",
                "sync": "full", "format": "qcow2"} }
    ]
  }
}

{ "execute": "transaction",
  "arguments": {
    "actions": [
      {"type": "block-dirty-bitmap-clear",
       "data": {"node": "drive0", "name": "bitmap0"} },
      {"type": "drive-backup",
       "data": {"device": "drive0",
                "target": "/path/to/new_full_backup.qcow2",
                "sync": "full", "format": "qcow2"} }
    ]
  }
}
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Life Cycle – New Sync Point
(Sunday night maintenance blues)

id=drive0
bitmap0

count=296704

full.qcow2
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Life Cycle – New Sync Point
(Sunday night maintenance blues)

id=drive0
bitmap0
count=0

full.qcow2 new.qcow2
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Life Cycle – First Incremental
(The first step of our journey)

Example 3: Create an incremental backup. Can be done 
via transaction or single QMP command.

{ "execute": "drive-backup",
  "arguments": {
    "device": "drive0",
    "bitmap": "bitmap0",
    "target": "inc.0.qcow2",
    "format": "qcow2",
    "sync": "incremental",
    "mode": "existing"
  }
}

{ "execute": "drive-backup",
  "arguments": {
    "device": "drive0",
    "bitmap": "bitmap0",
    "target": "inc.0.qcow2",
    "format": "qcow2",
    "sync": "incremental",
    "mode": "existing"
  }
}

# qemu-img create -f qcow2 inc.0.qcow2 -b full.qcow2 -F qcow2# qemu-img create -f qcow2 inc.0.qcow2 -b full.qcow2 -F qcow2
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Life Cycle – First Incremental
(The first step of our journey)

id=drive0
bitmap0

count=296704

full.qcow2
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Life Cycle – First Incremental
(The first step of our journey)

id=drive0
bitmap0
count=0

full.qcow2 inc.0.qcow2
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Life Cycle – Subsequent Backups
(To infinity, and beyond!)

Examples [4,∞): Create subsequent incrementals.

{ "execute": "drive-backup",
  "arguments": {
    "device": "drive0",
    "bitmap": "bitmap0",
    "target": "inc.<n>.qcow2",
    "format": "qcow2",
    "sync": "incremental",
    "mode": "existing"
  }
}

{ "execute": "drive-backup",
  "arguments": {
    "device": "drive0",
    "bitmap": "bitmap0",
    "target": "inc.<n>.qcow2",
    "format": "qcow2",
    "sync": "incremental",
    "mode": "existing"
  }
}

# qemu-img create -f qcow2 inc.<n>.qcow2 -b inc.<n-1>.qcow2 -F qcow2# qemu-img create -f qcow2 inc.<n>.qcow2 -b inc.<n-1>.qcow2 -F qcow2
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Life Cycle – Subsequent Backups
(To infinity, and beyond!)

id=drive0
bitmap0

count=6144

full.qcow2 inc.0.qcow2
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Life Cycle – Subsequent Backups
(To infinity, and beyond!)

id=drive0
bitmap0
count=0

full.qcow2 inc.0.qcow2 inc.1.qcow2



Interlude



Interlude: Transactions

(Just kidding, we’re gonna talk about more stuff)
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Explainer: Block Jobs
(Jobs & The Economy: Redux)

● What are jobs?
● QMP commands are synchronous
● QMP socket blocks on each command
● So what about long-running commands?

● BlockJobs: Asynchronous task API
● Allows management via further QMP commands
● For more info: See literally* any talk from KVM Forum 

2016

(ha ha ha)

*figuratively
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Transactions - detail
(In case you forgot? Sorry, there’s a lot of stuff.)

Transactions:
● Allow batching of certain QMP commands
● Each individual item is an “action”
● Transaction succeeds only if all actions do
● Some actions/commands launch jobs
● Some do not.
● Wow, I hope that doesn’t cause any problems.

(Of course it did.)
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Transactions X Jobs
(Transaction Interaction Intersection)

How do job-actions work?
● Before 2.5:

● Action succeeds if job is started
● Jobs failing later have no effect on other jobs
● Some backups succeed, some fail
● completion_mode=individual
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Transactions X Jobs
(Transaction Interaction Intersection)

How do job-actions work?
● After 2.5, with completion_mode=grouped …

● Action succeeds if job is started
● No change from ‘individual’ mode

● Jobs cannot complete until all jobs ready to
● One job will cause all others to fail

● Clients can avoid keeping state on partial failures
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Multidrive Coherency
(Transaction actions in action (not to be confused with inaction))

{ "execute": "transaction",
  "arguments": {
    "actions": [
      { "type": "drive-backup",
        "data": { "device": "drive0", "bitmap": "bitmap0",
                  "format": "qcow2", "mode": "existing",
                  "sync": "incremental",
                  "target": "inc0.a.qcow2" } },
      { "type": "drive-backup",
        "data": { "device": "drive1", "bitmap": "bitmap1",
                  "format": "qcow2", "mode": "existing",
                  "sync": "incremental",
                  "target": "inc1.a.qcow2" } },
    ]
  }
}

{ "execute": "transaction",
  "arguments": {
    "actions": [
      { "type": "drive-backup",
        "data": { "device": "drive0", "bitmap": "bitmap0",
                  "format": "qcow2", "mode": "existing",
                  "sync": "incremental",
                  "target": "inc0.a.qcow2" } },
      { "type": "drive-backup",
        "data": { "device": "drive1", "bitmap": "bitmap1",
                  "format": "qcow2", "mode": "existing",
                  "sync": "incremental",
                  "target": "inc1.a.qcow2" } },
    ]
  }
}
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Multidrive Coherency
(Twice as nice!)

id=drive0
bitmap0

count=10582

full0.qcow2

id=drive1
bitmap1

count=8252

full1.qcow2
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Multidrive Coherency
(Thrice as nice?)

id=drive0
bitmap0
count=0

full0.qcow2 inc0.a.qcow2 inc1.a.qcow2

id=drive1
bitmap1
count=0

full1.qcow2
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Multidrive Coherency
(...frice?)

id=drive0
bitmap0
count=0

full0.qcow2 inc0.a.qcow2 inc1.a.qcow2

id=drive1
bitmap1
count=0

full1.qcow2
tdrive0 = tdrive1
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Partial Failures, Individual
(Not my problem)

id=drive0
bitmap0

count=10582

full0.qcow2 inc0.a.qcow2 inc1.a.qcow2

id=drive1
bitmap1

count=8252

full1.qcow2
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Partial Failures, Individual
(Not my problem)

id=drive0
bitmap0
count=0

full0.qcow2 inc0.a.qcow2

id=drive1
bitmap1

count=8252

full1.qcow2
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Partial Failures, Grouped
(Stronger together?)

id=drive0
bitmap0

count=10582

full0.qcow2 inc0.a.qcow2 inc1.a.qcow2

id=drive1
bitmap1

count=8252

full1.qcow2
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Partial Failures, Grouped
(Stronger together?)

id=drive0
bitmap0

count=10582

full0.qcow2 inc0.a.qcow2 inc1.a.qcow2

id=drive1
bitmap1

count=8252

full1.qcow2
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Partial Failures, Grouped
(Stronger together?)

id=drive0
bitmap0

count=10582

full0.qcow2

id=drive1
bitmap1

count=8252

full1.qcow2



ACT III: ADVANCED FEATURES

(In which our heroes rise above)
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Bitmap Migration - 1st attempt
(Pack your data, we're moving to <target>)

● Mechanism similar to disk migration
● Data split into chunks (1KiB)

● Bitmaps serialized piece-by-piece
● For sets of bitmaps below 1MiB…

● Skip the live phase and copy the data wholesale.
● 64GiB disk bitmap is only 128KiB

● (+node and bitmap names, and stream metadata)
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Bitmap Migration - 1st attempt
(Pack your data, we're moving to <target>)

● Bitmaps not transferred alongside data
● Transferred separately for flexibility

● “meta bitmaps” (dirty “dirty bitmap” bitmaps!?)
● Captures changes during live migration
● Pieces can be resent if needed.
● Uses very little memory: 64GiB → 16 bytes
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Bitmap Migration - 2nd attempt
(We’re on the road again...)

● 1st approach worsens convergence problem
● May not scale well

● New approach uses a post-copy technique
● Simply send the whole bitmap post-pivot
● Record new writes on target

● Prohibit backups until data arrives
● Re-merge bitmaps on target
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Bitmap Migration - Failures
(Mission Failed! We’ll get ‘em next time.)

What happens if the source dies post-pivot?
● Considered non-critical loss
● Bitmap chains can be re-started
● Future:

● Reconstruct bitmap from two images?
● Other Options:

● Use shared-storage migration
● With persistence <stay tuned>
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Bitmap Persistence – Change of Plans
(I have altered the code. Pray I do not alter it further.)

● Plans were for a format-agnostic format
● Using qcow2 to store bitmaps for arbitrary files
● Plans scrapped…

● Now, we’re targeting qcow2
● More on other formats in a bit…!
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Bitmap Persistence
(Object permanence: not just for toddlers)

● Persistence targets the qcow2 format.
● Multiple bitmaps can be stored per-file
● Bitmaps have ‘types,’ we use a ‘dirty’ bitmap
● Bitmaps can ‘autoload’ in QEMU
● Spec amendment is merged!
● Patches ready on-list from Virtuozzo
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Bitmap Persistence – Non qcow2
(AKA, “Can I please use this with raw?”)

● We have some options for other formats.
● Some formats may add primary support

● Virtuozzo has expressed interest for parallels
● Qcow2 with write-forwarding backing files?

● Instead of read-only
● Offer to forward writes
● Allow for any format
● Other benefits
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“Push Model” backups
(Let’s take all our problems… and push them somewhere else!)

Backups described so far are “Push” model:
● QEMU “pushes” the data to a target
● It knows what sectors need to be pushed
● This works out pretty OK, but…

● Some vendors wanted a different model
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“Pull Model” backups
(sometimes it’s nice when doors work both ways)

The “Pull model” is different:
● QEMU offers a temporary, lightweight snapshot

● “Image Fleecing”
● Exported via NBD

● Via NBD extensions, client queries for status
● Client controls data flow
● Snapshot is deleted on close
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“Pull Model” backups
(sometimes it’s nice when doors work both ways)

● Snapshot view is point-in-time
● (like push model)

● Requires on-disk cache
● Offers full control on what is copied

● How the data is stored is decided by the client
● Most “QEMU-agnostic” method

● Only way to query dirty blocks



Incremental Backups: John Snow; FOSDEM 201776

TODOs
(<TODO: insert cheeky joke>)

● QMP interface for “pull” model
● QMP interface for modifying persistence attributes
● CLI tools for verification, analysis

● Deletion/cleaning tools
● “Offline” incremental backup support?

● “fsck support”
● qemu-img check -r (?)



Incremental Backups: John Snow; FOSDEM 201777

TODOs
(<TODO: insert cheeky joke>)

● Data integrity
● Periodic/opportunistic flushing

● GSOC / Outreachy 2017:
● Reference implementation
● CLI backup tool
● Python?
● Keep your eyes peeled:
● http://wiki.qemu.org/Google_Summer_of_Code_2017



Dénouement

(In which our heroes live incrementally ever after)



Incremental Backups: John Snow; FOSDEM 201779

Project Status
(When do we get to use it!?)

● block-dirty-bitmap QMP interface
● sync=incremental mode (push)
● Transactions
● Qcow2 Persistence (Spec)
● Grouped Transactions
● Migration
● Persistence
● Pull model

● Merged! (2.4)
● Merged! (2.4)
● Merged! (2.5)
● Merged! (2.6)
● Merged! (2.8)
● Review, (2.9)
● Review, (2.9)
● Specs, (2.10+)



Questions?



Further Reading:

QEMU project wiki:
http://qemu-project.org/Main_Page

Bitmaps Documentation:
…/qemu/docs/bitmaps.md 

QEMU iotests:
…/qemu/tests/qemu-iotests/124

Project status whitepaper (PDF):
http://goo.gl/tT6n8S

KVM Forum 2016 ‘jobs’ talk:
http://events.linuxfoundation.org/sites/events/files/slides/kvm2016_v16.pdf

http://qemu-project.org/Main_Page


THANK YOU!THANK YOU!

More questions?
jsnow@redhat.com

cc: qemu-devel@nongnu.org

mailto:jsnow@redhat.com
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