
Incremental Backups

John Snow (yes, I know)
Software Engineer, Red Hat
2017-02-05

(Good things come in small packages!)

Incremental Backups: John Snow; FOSDEM 20172

Acknowledgments
(Because computers are awful and I need help sometimes)

No feature is an island, so I'd like to acknowledge:
● Jagane Sundar

● Initial feature proposal and prior work (2011)
● Fam Zheng

● Initial drafts for current version (2014-2015)
● Stefan Hajnoczi & Max Reitz

● Reviews and patience

Incremental Backups: John Snow; FOSDEM 20173

Acknowledgments
(Because computers are awful and I need help sometimes)

No feature is an island, so I'd like to acknowledge:
● Vladimir Sementsov-Ogievskiy, Virtuozzo

● Advanced features (Persistence, Migration)
● Performance enhancements
● Reviews, Patience, and general excellence

● Denis Lunev, Virtuozzo
● Dedicated and persistent involvement

Incremental Backups: John Snow; FOSDEM 20174

Overview
(Things I hope not to stammer through)

Prologue
● Problem Statement
● Approach
● Design Goals
Act I: Building Blocks
● Block Dirty Bitmaps
● QMP interface and usage
● QMP transactions

Incremental Backups: John Snow; FOSDEM 20175

Overview
(Things I hope not to stammer through)

Act II: Life-cycle
● Incremental backup life-cycle
● Examples
Aside: Transactions
● BlockJobs
● Transactions
● Multi-drive Coherency
● Errors

Incremental Backups: John Snow; FOSDEM 20176

Overview
(Things I hope not to stammer through)

Act III: Advanced Features
● Migration
● Persistence
● Push vs Pull model backups
● TODOs
Dénouement
● Project Status, Questions and Answers

PROLOGUE

(In which our heroes come to know the enemy)

Incremental Backups: John Snow; FOSDEM 20178

Gross.

The Problem
(I just wandered into this talk, what's it about?)

Wednesday
128GiB

● Abysmal storage efficiency
● Clunky, slow
● But admittedly simple and convenient

Tuesday
128GiB

Monday
128GiB

Thursday
128GiB

Friday
128GiB

Incremental Backups: John Snow; FOSDEM 20179

Much Better!

The Problem
(I just wandered into this talk, what's it about?)

Monday
128GiB

Tuesday
2GiB

Wednesday
2.5GiB

Thursday
2.21GiB

Friday
1GiB

● Efficient: only copies modified data
● Fast!
● More complicated...?

Incremental Backups: John Snow; FOSDEM 201710

Welcome!
(You’re in my world now)

QEMU added preliminary support for incremental
backups in QEMU 2.4, 2015-08-11.

● (I can’t commit to either US or EU dates, so enjoy this
ISO one instead)

● Development is ongoing as of 2.8
● Not included as “supported” in a Red Hat product yet

● So, it’s mostly for the brave.
● But we’re nearing feature completion.

Incremental Backups: John Snow; FOSDEM 201711

Approach
(Where did we come from; where did we go)

Incremental Live Backups have a storied lineage.
● Jagane Sundar's LiveBackup (2011)

● Separate CLI tools
● Entirely new network protocol
● Ran as an independent thread
● Utilized temporary snapshots for atomicity
● Implemented with in-memory dirty block bitmaps
● Was ultimately not merged

Incremental Backups: John Snow; FOSDEM 201712

Approach
(Where did we come from; where did we go)

Fam Zheng's Incremental Backup (2014)
● Also dirty sector bitmap based

● Uses existing HBitmap/BdrvDirtyBitmap primitives
● No new external tooling or protocols
● Managed via QMP
● Implemented simply as a new backup mode
● Can be used with any image format
● Maximizes compatibility with existing backup tools

Incremental Backups: John Snow; FOSDEM 201713

Design Goals
(What do we want?)

● Reuse existing primitives as much as possible
● Key structure: 'block driver dirty bitmap'

● Already tracks dirty sectors
● Used for drive mirroring, block migration
● Configurable granularity
● Many bitmaps can be used per-drive

Incremental Backups: John Snow; FOSDEM 201714

Design Goals
(What do we want? Efficient Backups!)

● Reuse existing primitives
● Key interface: drive-backup

● Implemented via well-known QMP protocol
● Used to create e.g. full backups
● Already capable of point-in-time live backups
● Can already export data via NBD
● We merely add a new sync=incremental mode

● ...And a bitmap=<name> argument.

Incremental Backups: John Snow; FOSDEM 201715

Design Goals
(When do we want it?)

● Coherency
● Multi-drive point-in-time backup accuracy
● Utilize existing QMP transaction feature

● Persistence
● Bitmaps must survive shutdowns and reboots
● Must not depend on drive data format
● Nor on the backup target format

Incremental Backups: John Snow; FOSDEM 201716

Design Goals
(When do we want it? By 2.9 hopefully!)

● Migration-safe
● Migrating must not reset or lose bitmap data

● Error Handling
● Bitmap data must not be lost on backup failure
● Starting a new full backup is not sufficiently robust

● Integrity
● We must be able to detect desync between

persistence data and block data

Incremental Backups: John Snow; FOSDEM 201717

Why not use snapshots?
(Saving you time during the Q&A)

“Both offer point-in-time views of data, why not use the
existing mechanism?”
● No need to parse format-specific snapshots on disk
● We can use any format
● Incremental backups are inert and do not grow

● No IO required to delete incrementals
● We can utilize existing backup frameworks
● Access to QEMU's NBD server

ACT I: BUILDING BLOCKS

(In which our heroes prepare for battle)

Incremental Backups: John Snow; FOSDEM 201719

Block Dirty Bitmaps
(Nothing to do with your image search settings)

Before showcasing incrementals, some background:
● BdrvDirtyBitmap is the existing block layer structure

used to track writes
● Already used for drive-mirror, live block migration
● Implemented using hierarchical bitmap
● Any number can be attached to a drive

● Allows for multiple independent backup regimes

Incremental Backups: John Snow; FOSDEM 201720

Block Dirty Bitmaps
(Nothing to do with your image search settings)

Hbitmap hierarchy:

Incremental Backups: John Snow; FOSDEM 201721

Block Dirty Bitmaps
(Nothing to do with your image search settings)

Bitmap plurality:

id=drive0

bitmap0

id=drive1

foo4 bar9 FOS DEM

Incremental Backups: John Snow; FOSDEM 201722

Block Dirty Bitmaps - Naming
(A bitmap by any other name would smell as sweet...?)

● Block dirty bitmaps may have names:
● Existing internal usages are anonymous
● The name is unique to the drive
● Bitmaps on different drives can have the same name
● The (node, name) pair is the bitmap ID

● Used to issue bitmap management commands

Incremental Backups: John Snow; FOSDEM 201723

Block Dirty Bitmaps - Naming
(A bitmap by any other name would smell as sweet...?)

Bitmap naming:

id=drive0

bitmap0

id=drive1

bitmap1 bitmap0

Incremental Backups: John Snow; FOSDEM 201724

Block Dirty Bitmaps - Granularity
(Backups from French Press to Turkish)

● Block dirty bitmaps have granularities:
● Small granularity – smaller backups*

● Uses more memory
● 1 TiB w/ g=32KiB → 4MiB
● 1 TiB w/ g=128KiB → 1MiB

● Default: 64KiB**
● Attempts to match cluster size
● 64KiB clusters (default) for qcow2

Incremental Backups: John Snow; FOSDEM 201725

Granularities – In Detail
(Tuned like the finest $4 ukulele)

● Bitmaps track writes per-sector
● Configure granularity in bytes
● 64K → 128 sectors (512 bytes/sector)

● The backup engine itself copies out per-cluster
● Currently: non-configurable, 64K clusters

● The file format also has a cluster size
● qcow2 defaults to 64K.

● Conclusion: 64K is probably best (for now)

Incremental Backups: John Snow; FOSDEM 201726

Block Dirty Bitmaps - Management
(Bitmap wrangling 101)

We need to manage these bitmaps to make backups.
● Managed via QMP

● Good news if you're a computer!
● Four commands:

● block-dirty-bitmap-add
● block-dirty-bitmap-remove
● block-dirty-bitmap-clear
● query-block

Incremental Backups: John Snow; FOSDEM 201727

Block Dirty Bitmaps - Creation
(Let there be... bits!)

● Bitmaps can be created at any time, on any node
● Bitmaps begin recording writes immediately
● Granularity is optional

{ "execute": "block-dirty-bitmap-add",
 "arguments": {
 "node": "drive0",
 "name": "bitmap0",
 "granularity": 131072
 }
}

{ "execute": "block-dirty-bitmap-add",
 "arguments": {
 "node": "drive0",
 "name": "bitmap0",
 "granularity": 131072
 }
}

Incremental Backups: John Snow; FOSDEM 201728

Block Dirty Bitmaps - Deletion
(For days when less is more)

● Can only be deleted when not in use
● Bitmaps are addressed by their (node, name) pair
● Has no effect on backups already made
● Has no effect on other bitmaps or nodes

{ "execute": "block-dirty-bitmap-remove",
 "arguments": {
 "node": "drive0",
 "name": "bitmap0"
 }
}

{ "execute": "block-dirty-bitmap-remove",
 "arguments": {
 "node": "drive0",
 "name": "bitmap0"
 }
}

Incremental Backups: John Snow; FOSDEM 201729

Block Dirty Bitmaps - Resetting
(Sometimes we just want a second chance)

● Bitmaps can be cleared of all data
● Primarily for convenience
● Begins recording new writes immediately, like add

{ "execute": "block-dirty-bitmap-clear",
 "arguments": {
 "node": "drive0",
 "name": "bitmap0"
 }
}

{ "execute": "block-dirty-bitmap-clear",
 "arguments": {
 "node": "drive0",
 "name": "bitmap0"
 }
}

Incremental Backups: John Snow; FOSDEM 201730

Block Dirty Bitmaps - Querying
(Who are you? Who who, who who?)

Bitmap data can be retrieved via block-query.

{"execute": "query-block", "arguments": {}}

{"return": [{ …
 “device”: “drive0”,
 "dirty-bitmaps": [{
 "status": "active",
 "count": 296704,
 "name": "bitmap0",
 "granularity": 65536 }]
… }]}

{"execute": "query-block", "arguments": {}}

{"return": [{ …
 “device”: “drive0”,
 "dirty-bitmaps": [{
 "status": "active",
 "count": 296704,
 "name": "bitmap0",
 "granularity": 65536 }]
… }]}

Incremental Backups: John Snow; FOSDEM 201731

Block Dirty Bitmaps - Querying
(Who are you? Who who, who who?)

Bitmap data can be retrieved via block-query.

{"execute": "query-block", "arguments": {}}

{"return": [{ …
 “device”: “drive0”,
 "dirty-bitmaps": [{
 "status": "active", (or “frozen”!)
 "count": 296704,
 "name": "bitmap0",
 "granularity": 65536 }]
… }]}

{"execute": "query-block", "arguments": {}}

{"return": [{ …
 “device”: “drive0”,
 "dirty-bitmaps": [{
 "status": "active", (or “frozen”!)
 "count": 296704,
 "name": "bitmap0",
 "granularity": 65536 }]
… }]}

Incremental Backups: John Snow; FOSDEM 201732

Block Dirty Bitmaps - Querying
(Who are you? Who who, who who?)

Bitmap data can be retrieved via block-query.

{"execute": "query-block", "arguments": {}}

{"return": [{ …
 “device”: “drive0”,
 "dirty-bitmaps": [{
 "status": "active",
 "count": 296704, (sectors!)
 "name": "bitmap0",
 "granularity": 65536 }] (2318 clusters)
… }]}

{"execute": "query-block", "arguments": {}}

{"return": [{ …
 “device”: “drive0”,
 "dirty-bitmaps": [{
 "status": "active",
 "count": 296704, (sectors!)
 "name": "bitmap0",
 "granularity": 65536 }] (2318 clusters)
… }]}

Incremental Backups: John Snow; FOSDEM 201733

Building Cognitive Dissonance
(Problem Statement 2: Electric Boogaloo)

● QMP commands are not particularly useful alone
● They are not atomic
● Only “safe” when VM is offline
● No cross-drive coherence guarantee

Incremental Backups: John Snow; FOSDEM 201734

Incremental Transactions
(Dissonance abated!)

● Bitmap management transactions allow us to—
● Create full backups alongside a bitmap reset
● Create a full backup alongside a new bitmap
● Reset bitmaps across multiple drives
● Issue a number of incremental backups across

multiple drives

Incremental Backups: John Snow; FOSDEM 201735

Incremental Transactions
(Dissonance abated!)

● Supported transaction actions:
● type:block-dirty-bitmap-add
● type:block-dirty-bitmap-clear

● No transaction needed for remove
● Works in conjunction with type:drive-backup

● For incrementals (multi-drive coherency)
● For full backups

● new incremental chains / sync points

ACT II: LIFE CYCLE

(In which our heroes save time and money)

Incremental Backups: John Snow; FOSDEM 201737

Incrementals – Life Cycle

1) Create a new backup chain, or
2) Synchronize an existing backup chain
3) Create the first incremental backup
4) Create subsequent incremental backups

New Bitmap Sync Point
(Full Backup) Incremental

Incremental Backups: John Snow; FOSDEM 201738

Life Cycle – New Chain
(There and backup again)

Example 1: Start a new backup chain atomically

{ "execute": "transaction",
 "arguments": {
 "actions": [
 {"type": "block-dirty-bitmap-add",
 "data": {"node": "drive0", "name": "bitmap0"} },
 {"type": "drive-backup",
 "data": {"device": "drive0",
 "target": "/path/to/full.qcow2",
 "sync": "full", "format": "qcow2"} }
]
 }
}

{ "execute": "transaction",
 "arguments": {
 "actions": [
 {"type": "block-dirty-bitmap-add",
 "data": {"node": "drive0", "name": "bitmap0"} },
 {"type": "drive-backup",
 "data": {"device": "drive0",
 "target": "/path/to/full.qcow2",
 "sync": "full", "format": "qcow2"} }
]
 }
}

Incremental Backups: John Snow; FOSDEM 201739

Life Cycle – New Chain
(There and backup again)

id=drive0

Incremental Backups: John Snow; FOSDEM 201740

Life Cycle – New Chain
(There and backup again)

id=drive0
bitmap0
count=0

full.qcow2

Incremental Backups: John Snow; FOSDEM 201741

Life Cycle – New Sync Point
(Sunday night maintenance blues)

Example 2: Take an existing bitmap and create a new full
backup as a synchronization point.

{ "execute": "transaction",
 "arguments": {
 "actions": [
 {"type": "block-dirty-bitmap-clear",
 "data": {"node": "drive0", "name": "bitmap0"} },
 {"type": "drive-backup",
 "data": {"device": "drive0",
 "target": "/path/to/new_full_backup.qcow2",
 "sync": "full", "format": "qcow2"} }
]
 }
}

{ "execute": "transaction",
 "arguments": {
 "actions": [
 {"type": "block-dirty-bitmap-clear",
 "data": {"node": "drive0", "name": "bitmap0"} },
 {"type": "drive-backup",
 "data": {"device": "drive0",
 "target": "/path/to/new_full_backup.qcow2",
 "sync": "full", "format": "qcow2"} }
]
 }
}

Incremental Backups: John Snow; FOSDEM 201742

Life Cycle – New Sync Point
(Sunday night maintenance blues)

id=drive0
bitmap0

count=296704

full.qcow2

Incremental Backups: John Snow; FOSDEM 201743

Life Cycle – New Sync Point
(Sunday night maintenance blues)

id=drive0
bitmap0
count=0

full.qcow2 new.qcow2

Incremental Backups: John Snow; FOSDEM 201744

Life Cycle – First Incremental
(The first step of our journey)

Example 3: Create an incremental backup. Can be done
via transaction or single QMP command.

{ "execute": "drive-backup",
 "arguments": {
 "device": "drive0",
 "bitmap": "bitmap0",
 "target": "inc.0.qcow2",
 "format": "qcow2",
 "sync": "incremental",
 "mode": "existing"
 }
}

{ "execute": "drive-backup",
 "arguments": {
 "device": "drive0",
 "bitmap": "bitmap0",
 "target": "inc.0.qcow2",
 "format": "qcow2",
 "sync": "incremental",
 "mode": "existing"
 }
}

qemu-img create -f qcow2 inc.0.qcow2 -b full.qcow2 -F qcow2# qemu-img create -f qcow2 inc.0.qcow2 -b full.qcow2 -F qcow2

Incremental Backups: John Snow; FOSDEM 201745

Life Cycle – First Incremental
(The first step of our journey)

id=drive0
bitmap0

count=296704

full.qcow2

Incremental Backups: John Snow; FOSDEM 201746

Life Cycle – First Incremental
(The first step of our journey)

id=drive0
bitmap0
count=0

full.qcow2 inc.0.qcow2

Incremental Backups: John Snow; FOSDEM 201747

Life Cycle – Subsequent Backups
(To infinity, and beyond!)

Examples [4,∞): Create subsequent incrementals.

{ "execute": "drive-backup",
 "arguments": {
 "device": "drive0",
 "bitmap": "bitmap0",
 "target": "inc.<n>.qcow2",
 "format": "qcow2",
 "sync": "incremental",
 "mode": "existing"
 }
}

{ "execute": "drive-backup",
 "arguments": {
 "device": "drive0",
 "bitmap": "bitmap0",
 "target": "inc.<n>.qcow2",
 "format": "qcow2",
 "sync": "incremental",
 "mode": "existing"
 }
}

qemu-img create -f qcow2 inc.<n>.qcow2 -b inc.<n-1>.qcow2 -F qcow2# qemu-img create -f qcow2 inc.<n>.qcow2 -b inc.<n-1>.qcow2 -F qcow2

Incremental Backups: John Snow; FOSDEM 201748

Life Cycle – Subsequent Backups
(To infinity, and beyond!)

id=drive0
bitmap0

count=6144

full.qcow2 inc.0.qcow2

Incremental Backups: John Snow; FOSDEM 201749

Life Cycle – Subsequent Backups
(To infinity, and beyond!)

id=drive0
bitmap0
count=0

full.qcow2 inc.0.qcow2 inc.1.qcow2

Interlude

Interlude: Transactions

(Just kidding, we’re gonna talk about more stuff)

Incremental Backups: John Snow; FOSDEM 201752

Explainer: Block Jobs
(Jobs & The Economy: Redux)

● What are jobs?
● QMP commands are synchronous
● QMP socket blocks on each command
● So what about long-running commands?

● BlockJobs: Asynchronous task API
● Allows management via further QMP commands
● For more info: See literally* any talk from KVM Forum

2016

(ha ha ha)

*figuratively

Incremental Backups: John Snow; FOSDEM 201753

Transactions - detail
(In case you forgot? Sorry, there’s a lot of stuff.)

Transactions:
● Allow batching of certain QMP commands
● Each individual item is an “action”
● Transaction succeeds only if all actions do
● Some actions/commands launch jobs
● Some do not.
● Wow, I hope that doesn’t cause any problems.

(Of course it did.)

Incremental Backups: John Snow; FOSDEM 201754

Transactions X Jobs
(Transaction Interaction Intersection)

How do job-actions work?
● Before 2.5:

● Action succeeds if job is started
● Jobs failing later have no effect on other jobs
● Some backups succeed, some fail
● completion_mode=individual

Incremental Backups: John Snow; FOSDEM 201755

Transactions X Jobs
(Transaction Interaction Intersection)

How do job-actions work?
● After 2.5, with completion_mode=grouped …

● Action succeeds if job is started
● No change from ‘individual’ mode

● Jobs cannot complete until all jobs ready to
● One job will cause all others to fail

● Clients can avoid keeping state on partial failures

Incremental Backups: John Snow; FOSDEM 201756

Multidrive Coherency
(Transaction actions in action (not to be confused with inaction))

{ "execute": "transaction",
 "arguments": {
 "actions": [
 { "type": "drive-backup",
 "data": { "device": "drive0", "bitmap": "bitmap0",
 "format": "qcow2", "mode": "existing",
 "sync": "incremental",
 "target": "inc0.a.qcow2" } },
 { "type": "drive-backup",
 "data": { "device": "drive1", "bitmap": "bitmap1",
 "format": "qcow2", "mode": "existing",
 "sync": "incremental",
 "target": "inc1.a.qcow2" } },
]
 }
}

{ "execute": "transaction",
 "arguments": {
 "actions": [
 { "type": "drive-backup",
 "data": { "device": "drive0", "bitmap": "bitmap0",
 "format": "qcow2", "mode": "existing",
 "sync": "incremental",
 "target": "inc0.a.qcow2" } },
 { "type": "drive-backup",
 "data": { "device": "drive1", "bitmap": "bitmap1",
 "format": "qcow2", "mode": "existing",
 "sync": "incremental",
 "target": "inc1.a.qcow2" } },
]
 }
}

Incremental Backups: John Snow; FOSDEM 201757

Multidrive Coherency
(Twice as nice!)

id=drive0
bitmap0

count=10582

full0.qcow2

id=drive1
bitmap1

count=8252

full1.qcow2

Incremental Backups: John Snow; FOSDEM 201758

Multidrive Coherency
(Thrice as nice?)

id=drive0
bitmap0
count=0

full0.qcow2 inc0.a.qcow2 inc1.a.qcow2

id=drive1
bitmap1
count=0

full1.qcow2

Incremental Backups: John Snow; FOSDEM 201759

Multidrive Coherency
(...frice?)

id=drive0
bitmap0
count=0

full0.qcow2 inc0.a.qcow2 inc1.a.qcow2

id=drive1
bitmap1
count=0

full1.qcow2
tdrive0 = tdrive1

Incremental Backups: John Snow; FOSDEM 201760

Partial Failures, Individual
(Not my problem)

id=drive0
bitmap0

count=10582

full0.qcow2 inc0.a.qcow2 inc1.a.qcow2

id=drive1
bitmap1

count=8252

full1.qcow2

Incremental Backups: John Snow; FOSDEM 201761

Partial Failures, Individual
(Not my problem)

id=drive0
bitmap0
count=0

full0.qcow2 inc0.a.qcow2

id=drive1
bitmap1

count=8252

full1.qcow2

Incremental Backups: John Snow; FOSDEM 201762

Partial Failures, Grouped
(Stronger together?)

id=drive0
bitmap0

count=10582

full0.qcow2 inc0.a.qcow2 inc1.a.qcow2

id=drive1
bitmap1

count=8252

full1.qcow2

Incremental Backups: John Snow; FOSDEM 201763

Partial Failures, Grouped
(Stronger together?)

id=drive0
bitmap0

count=10582

full0.qcow2 inc0.a.qcow2 inc1.a.qcow2

id=drive1
bitmap1

count=8252

full1.qcow2

Incremental Backups: John Snow; FOSDEM 201764

Partial Failures, Grouped
(Stronger together?)

id=drive0
bitmap0

count=10582

full0.qcow2

id=drive1
bitmap1

count=8252

full1.qcow2

ACT III: ADVANCED FEATURES

(In which our heroes rise above)

Incremental Backups: John Snow; FOSDEM 201766

Bitmap Migration - 1st attempt
(Pack your data, we're moving to <target>)

● Mechanism similar to disk migration
● Data split into chunks (1KiB)

● Bitmaps serialized piece-by-piece
● For sets of bitmaps below 1MiB…

● Skip the live phase and copy the data wholesale.
● 64GiB disk bitmap is only 128KiB

● (+node and bitmap names, and stream metadata)

Incremental Backups: John Snow; FOSDEM 201767

Bitmap Migration - 1st attempt
(Pack your data, we're moving to <target>)

● Bitmaps not transferred alongside data
● Transferred separately for flexibility

● “meta bitmaps” (dirty “dirty bitmap” bitmaps!?)
● Captures changes during live migration
● Pieces can be resent if needed.
● Uses very little memory: 64GiB → 16 bytes

Incremental Backups: John Snow; FOSDEM 201768

Bitmap Migration - 2nd attempt
(We’re on the road again...)

● 1st approach worsens convergence problem
● May not scale well

● New approach uses a post-copy technique
● Simply send the whole bitmap post-pivot
● Record new writes on target

● Prohibit backups until data arrives
● Re-merge bitmaps on target

Incremental Backups: John Snow; FOSDEM 201769

Bitmap Migration - Failures
(Mission Failed! We’ll get ‘em next time.)

What happens if the source dies post-pivot?
● Considered non-critical loss
● Bitmap chains can be re-started
● Future:

● Reconstruct bitmap from two images?
● Other Options:

● Use shared-storage migration
● With persistence <stay tuned>

Incremental Backups: John Snow; FOSDEM 201770

Bitmap Persistence – Change of Plans
(I have altered the code. Pray I do not alter it further.)

● Plans were for a format-agnostic format
● Using qcow2 to store bitmaps for arbitrary files
● Plans scrapped…

● Now, we’re targeting qcow2
● More on other formats in a bit…!

Incremental Backups: John Snow; FOSDEM 201771

Bitmap Persistence
(Object permanence: not just for toddlers)

● Persistence targets the qcow2 format.
● Multiple bitmaps can be stored per-file
● Bitmaps have ‘types,’ we use a ‘dirty’ bitmap
● Bitmaps can ‘autoload’ in QEMU
● Spec amendment is merged!
● Patches ready on-list from Virtuozzo

Incremental Backups: John Snow; FOSDEM 201772

Bitmap Persistence – Non qcow2
(AKA, “Can I please use this with raw?”)

● We have some options for other formats.
● Some formats may add primary support

● Virtuozzo has expressed interest for parallels
● Qcow2 with write-forwarding backing files?

● Instead of read-only
● Offer to forward writes
● Allow for any format
● Other benefits

Incremental Backups: John Snow; FOSDEM 201773

“Push Model” backups
(Let’s take all our problems… and push them somewhere else!)

Backups described so far are “Push” model:
● QEMU “pushes” the data to a target
● It knows what sectors need to be pushed
● This works out pretty OK, but…

● Some vendors wanted a different model

Incremental Backups: John Snow; FOSDEM 201774

“Pull Model” backups
(sometimes it’s nice when doors work both ways)

The “Pull model” is different:
● QEMU offers a temporary, lightweight snapshot

● “Image Fleecing”
● Exported via NBD

● Via NBD extensions, client queries for status
● Client controls data flow
● Snapshot is deleted on close

Incremental Backups: John Snow; FOSDEM 201775

“Pull Model” backups
(sometimes it’s nice when doors work both ways)

● Snapshot view is point-in-time
● (like push model)

● Requires on-disk cache
● Offers full control on what is copied

● How the data is stored is decided by the client
● Most “QEMU-agnostic” method

● Only way to query dirty blocks

Incremental Backups: John Snow; FOSDEM 201776

TODOs
(<TODO: insert cheeky joke>)

● QMP interface for “pull” model
● QMP interface for modifying persistence attributes
● CLI tools for verification, analysis

● Deletion/cleaning tools
● “Offline” incremental backup support?

● “fsck support”
● qemu-img check -r (?)

Incremental Backups: John Snow; FOSDEM 201777

TODOs
(<TODO: insert cheeky joke>)

● Data integrity
● Periodic/opportunistic flushing

● GSOC / Outreachy 2017:
● Reference implementation
● CLI backup tool
● Python?
● Keep your eyes peeled:
● http://wiki.qemu.org/Google_Summer_of_Code_2017

Dénouement

(In which our heroes live incrementally ever after)

Incremental Backups: John Snow; FOSDEM 201779

Project Status
(When do we get to use it!?)

● block-dirty-bitmap QMP interface
● sync=incremental mode (push)
● Transactions
● Qcow2 Persistence (Spec)
● Grouped Transactions
● Migration
● Persistence
● Pull model

● Merged! (2.4)
● Merged! (2.4)
● Merged! (2.5)
● Merged! (2.6)
● Merged! (2.8)
● Review, (2.9)
● Review, (2.9)
● Specs, (2.10+)

Questions?

Further Reading:

QEMU project wiki:
http://qemu-project.org/Main_Page

Bitmaps Documentation:
…/qemu/docs/bitmaps.md

QEMU iotests:
…/qemu/tests/qemu-iotests/124

Project status whitepaper (PDF):
http://goo.gl/tT6n8S

KVM Forum 2016 ‘jobs’ talk:
http://events.linuxfoundation.org/sites/events/files/slides/kvm2016_v16.pdf

http://qemu-project.org/Main_Page

THANK YOU!THANK YOU!

More questions?
jsnow@redhat.com

cc: qemu-devel@nongnu.org

mailto:jsnow@redhat.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

