
1/30

Dominig ar Foll
Senior Software Architect

 Intel Open Source

 Fosdem 2017, Brussel, Be dominig.arfoll@fridu.net

2/30

A harden Embedded Linux

Applicable to any Industrial IoT Linux

3/30

4/30

Top 25 Git Committers in 2016

Commits Name Company

533 Jose Bollo IoT.BZH

166 NuoHan Qiao Fujitsu Ten

146 Jan-Simon Moeller Linux Foundation

102 Stephane Desneux IoT.BZH

92 Jens Bocklage Mentor Graphics

86 Tasuku Suzuki Qt Company

85 Manuel Bachmann IoT.BZH

70 Yannick Gicquel IoT.BZH

64 Ran Cao Fujitsu Ten

57 Tadao Tanikawa Panasonic

55 Fulup Ar Foll IoT.BZH

42 Leon Anavi Konsulko

Slide 5

Commits Name Company

40 Anton Gerasimov Advanced Telematics

35 Yanhua GU Fujitsu Ten

22 Christian Gromm Microchip

21 Ronan IoT.BZH

20 SriMaldia Alps

18 Naoto Yamaguchi AisinAW

15 Karthik Ramanan TI

13 Scott Murray Konsulko

11 Kotaro Hashimoto Mitsubishi Electric

9 Matt Porter Konsulko

8 Dominig Ar Foll Intel

8 Yuta Doi Witz

8 Jian Zhang Fujitsu Ten

• 01 Jan 2016 – 31 Dec 2016
• Commits to master

1791 Total Commits
45 Committers
24 Companies

6/30

A Linux for Automotive ?
➢ Embedded Yocto built
➢ Strong interaction with Sensors
➢ Non Desktop UI
➢ Dedicated Entry buttons
➢ MultipleScreens enabled

➢ Managed device
➢ Any fault will be blamed on system provider
➢ Applications are gated by system provider
➢ Long life support
➢ No admin system to rely on
➢ ...

7/30

From Auto to Industry
➢ Features
➢ Speed, position, sensors
➢ Dedicated UI
➢ Dedicated Entry buttons
➢ Multimedia features
➢ Emergency phone service
➢ Remote Diagnostic

➢ Implementation
➢ Embedded Linux with dedicated UI
➢ Connectivity
➢ 100% remote support operation
➢ Very reliable

8/30

What is AGL
(Jan 17)
➢ Focus on the core OS
➢ Yocto 2.2
➢ Linux 4.4 or 4.8
➢ Security model from Tizen
➢ Standard Layer for BSP
➢ Source sync via repo tool
➢ Ready made Docker SDK

➢ App and Middleware
➢ Isolated from the Core OS
➢ AppFW enforced security
➢ No default UI

9/30

AGL Architecture

10/30

Service isolation
Run services with UID<>0 SystemD is your friend
l Create dedicated UID per service
l Use Linux MAC and Smack DAC to minimise open Access
Drop privileges
l Posix privileges
l MAC privileges
C-goups
l Reduce offending power
l RAM/CPU/IO
Name Space
l Limit access to private data
l Limit access to connectivity

https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
https://www.kernel.org/pub/linux/libs/security/linux-privs/kernel-2.2/capfaq-0.2.txt
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://en.wikipedia.org/wiki/Mandatory_access_control
https://en.wikipedia.org/wiki/Discretionary_access_control

https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
https://www.kernel.org/pub/linux/libs/security/linux-privs/kernel-2.2/capfaq-0.2.txt
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://en.wikipedia.org/wiki/Mandatory_access_control

11/30

Segregate Apps from OS
➢ Application Manager

➢ One system daemon for application live cycle installs, update, delete
➢ One user daemon per user for application start, stop, pause, resume
➢ Create initial share secret between UI and Binder
➢ Spawn and controls application processes: binder, UI, …

➢ Security Manager

➢ Responsible of privilege enforcement
➢ Based on Cynara + WebSocket and D-Bus for Legacy)

➢ Application & Services Binders
➢ Expose platform APIs to UI, Services, Applications
➢ Loads services/application plugins :Audio, Canbus, Media Server…
➢ One private binder per application/services [REST, WebSocket, Dbus]
➢ Authenticate UI by oAuth token type
➢ Secured by SMACK label + UID/GIDs
➢ AppBinders runs under user $HOME

12/30

AGL2 Application Security

Agent-2
Car Environement

Agent-3
Engine

Agent-4
Remote Signal

CAN Bus-A

LIN Bus-A

Audio

CAN Bus-B

Cluster-Unit

...

Smart City

RVI

Cloud

Transport + Acess Control

Navigation
Service

Carte handling

POI management

etc...

Log/Supervision
Service

Carte handling

POI management

etc...

MultiMedia
Service

Media Player

Radio Interface

etc...

Distributed Application Architecture

MAC
Enforcement

Smack

Cgroups
NameSpace
Containers

Application Framwork Live Cycle Management
St

ar
t,S

to
p,

Pa
us

e,
In

st
al

l,R
em

ov
e,

...

13/30

AGL2 AppFW logic

14/30

AGL2++ Virtualised Architecture

Hardware

Trusted
Zone

Hypervisor

M
or

e
Pr

iv
ile

ge
s

Le
ss

 P
riv

ile
ge

s

AGL Linux Kernel
Guest Operating

Linux-RT/Microkernel
Guest Operating

AGL Core
Plateform Services

AGL Extra
Middleware

AG
L

Ap
p-

1

AG
L

Ap
p-

2

AG
L

Ap
p-

3

DomU Entertainment

A
p

p
-1

A
p

p
-2

AGL Mini
Plateform Services

DomU Cluster

Trusted Apps

AGL Linux
Supervisor

P
K

I s
a

fe
 S

to
re

In
te

g
re

ty
 c

o
n

tr
o

l

R
e

ss
o

u
rc

e
s

A
llo

c/
P

o
rx

y

E
m

e
rg

e
n

cy

S
e

rv
ic

e
s

Trusted
Boot

DOM0 controller

Virt
GPU

Virt
Audio

Virt
GPU

Virt
Audio

D
ia

g
n

is
ti

cs

Virtualized Secure Architecture

Container

15/30

Building the OS
➢ Collection of Yocto Layers

➢ Multi-Architecture (Intel, ARM)
➢ Multiple Haker Board support (Minnow, Joule, R3, RasberryPI 3).
➢ Hardening by design
➢ Critical services provided
➢ Design for custom additions

➢ No imposed UI
➢ Home Screen as an API
➢ Local (Native or HTML5) or remote UI (via REST API)

➢ Application and Middleware
➢ Built independently (via yocto SDK)
➢ Web Socket based AppFW for easy integration
➢ App and Middleware run in isolated security domains

16/30

To write an App
➢ Write back-end binding

➢ Adds the specialised API to the system
➢ Accessible by Web Socket or slow legacy D-Bus
➢ Run in its own security domain
➢ Can be cascaded

➢ Write the Front end
➢ Typically in HTML5, QML but open to any
➢ Connect to back-end binding using REST with secured key (OAuth2)
➢

➢ Package
➢ Based on W3C widget
➢ Feature allow to handle AGL specificities
➢ Install via the AppFW

17/30

AGL2+ Distributed Architecture

Cluster

Carte handling

Localistion management

POI

CAN GPS

Geopositioning
Virtual
Signal

Multi ECU & Cloud Aware Architecture

Entertainement

CAN-BUS
Virtual Signal

Gyro, AcelerometerCAN-BUS

LIN-BUS

Engine-CAN-BUS

ABS

Transport & ACL

Head Unix

Direction Indication

Cloud

Log
Analytics

No-SQL Engine

Statistics & Analytics

Transport & ACL

My Car Portal

Paiement

Subcriptions

Preference

Preferences
&

Custumisation

MongoDB Engine

Paiement Service

Cluster
Virtual Signal

Transport & ACL

Navigation
Service

Maintenance Portal

Know Bugs

Maintenances

Service Packs

Attacking IoT, a viable business
➢ Ransom model
➢ Stall manufacturing
➢ Immobilise expensive items (e.g. your car)
➢ …

➢ Competitive advantage
➢ Collecting R&D, manufacturing data
➢ Disturbing production line

➢ Indirect
➢ Cheap robot for DDoS
➢ Easy entry point

19/30

Security fundamentals
Minimise surface of attack
Control the code which is run
Provide a bullet proof update model
Track security patches
Use HW security helpers when available
Limit lateral movement in the system
Develop and QA with security turned on
Do not rely on human but on platform and tools

 Security cannot be added after the fact

Do not rely on human
➢ Security experts are out of reach
➢ 9M Mobile Developers
➢ 8M Web Developers
➢ 0.5M Embedded Developers
➢ How many Embedded Security
Developers ?

➢ Human are unreliable
➢ We do not have the time now
➢ Oups, it’s too late to change it
➢ No one is interested by our system
➢ We are too small
➢ ...

21/30

Concepts are Known
but what about implementation?

EPID
ID Management

EPID
ID Management

TPM
Private/Secure Store

TPM
Private/Secure Store

UEFI
Secured Boot

UEFI
Secured Boot

Linux Kernel with up-to-date patchesLinux Kernel with up-to-date patches

SoC Specific drivers

Harden OS servicesHarden OS services

Mandatory Access Control
Integrity
Name Space
Firewall
Safe update
Encryption
ID/Key protection

 API API

Untrusted Apps / MiddlewareUntrusted Apps / Middleware Full isolation

Signing
Repo create
Debug
Customize
SoC Drivers

Signing
Repo create
Debug
Customize
SoC Drivers

Default policies
Debug
Sample code
HowTo

Default policies
Debug
Sample code
HowTo

AppFW
App Debug
App Packaging

AppFW
App Debug
App Packaging

Tools-DocTools-Doc Software running onTargetSoftware running onTarget

22/30

Conclusion
➢ AGL is Industry friendly

➢ Automotive have very generic
requirements

➢ Reuse potential is huge
➢ AGL is really open source
➢ In AGL code remains king

➢ Security ready model
➢ Hardeling comes for free
➢ Cybersecurity is a permanent focus

➢ Application and Middleware are isolated
➢ AppFW is designed to connect modules via WebSockets
➢ Business logic and UI are easy to isolate
➢ App and Middleware SW is based on well know Web technologies

Questions

Fosdem 2017, Brussel, Be dominig.arfoll@fridu.net

Fosdem 2017, Brussel, Be dominig.arfoll@fridu.net

Links

https://www.automotivelinux.org/
https://gerrit.automotivelinux.org/gerrit/#/q/s
tatus:open
http://docs.automotivelinux.org/
https://vimeo.com/channels/1196445

https://www.automotivelinux.org/
https://gerrit.automotivelinux.org/gerrit/#/q/status:open
https://gerrit.automotivelinux.org/gerrit/#/q/status:open
http://docs.automotivelinux.org/
https://vimeo.com/channels/1196445

25/30

Backup slides

26/30

Container "A mixed blessing"
Easy to use
l Detach the App from the platform
l Integrated App management
l Well known
Not very secure
l Unreliable introspection
l MAC has no power on the inside of a container
l Updating the platform does not update the
l middleware
l Beside the Kernel each App provide its own version
l of the OS
l Each App restart requires a full passing of credential
l RAM and Flash footprint are uncontrollable
l Far more secured with Clear Container but not applicable to low end SoC.
Only I/O via network
l Well equipped for Rest API
l All other I/O requires driver level access or bespoke framework.

https://www.opencontainers.org/
https://lwn.net/Articles/644675/

https://www.opencontainers.org/

27/30

Know who/what you trust
➢ Trusted Boot : a MUST Have Feature

➢ Leverage hardware capabilities
➢ Small series & developer key handling

➢ Application Installation
➢ Verify integrity
➢ Verify origin
➢ Request User Consent [privacy & permissions]

➢ Update
➢ Only signed updates with a trusted origin
➢ Secured updates on compromised devices are a no-go option
➢ Factory reset built-in from a trusted zone
➢ Do not let back doors opened via containers
➢ Strict control of custom drivers [in kernel mode everything is possible]

28/30

Layered Architecture
➢ Client/UI (untrusted)

➢ Risk of code injection (HTML5/QML)
➢ UI on external devices (Mobiles, Tablets)
➢ Access to secure service APIs [REST/WS]

➢ Applications & Services (semi-trusted)
➢ Unknown developers & Multi-source
➢ High-grain protection by Linux DAC & MAC labels.
➢ Run under control of Application Framework: need to provide a
security manifest

➢ Platform & System services (trusted)
➢ Message Services started by systemd
➢ Service and API fine grain privilege protection
➢ Part of baseline distribution and certified services only

29/30

Bullet proof update and ID
Update is the only possible correction
l Must run safely on compromised devices
l Cannot assume a know starting point

Compromised ID / keys has no return
l Per device unique ID
l Per device symmetric keys
l Use HW ID protection (e.g. EPID)

Non reproducibility
l Breaking in one device cannot be extended
l Development I/O are disabled
l Root password is unique (or better a key)
l Password cannot be easily recalculated

30/30

Security Check list
Control which code you run
l Secure boot
l Integrity
l Secure update
Isolate services
l Drop root when possible
l Drop privileges
Isolate Apps
l Apps are not the OS
l Enforce – restrict access to standard API
Identity
l Enforce identity unicity
l Use available HW protection
Encryption
l Network traffic
l Local storage

Control image creation
l No debug tool in production
l No default root password
l No unrequired open port
Continuous integration
l Automate static analysis
l QA on secured image
Help developer
l Integrate security in Devel image
l Provide clear guide line
l Isolate Apps from OS
l Focus on standardised Middleware

	Diapo 1
	AGL
	Diapo 3
	Diapo 4
	Top 25 Git Committers in 2016
	Diapo 6
	Diapo 7
	Diapo 8
	AGL Service isolation
	Diapo 10
	AGL segregate Apps
	AGL2 App security
	AGL App FW
	AGL 2++
	Diapo 15
	AGL Write an App
	AGL 2+
	Attacking a viable business
	Security fundanemtals
	Do not rely on human
	Generic Security
	Conclusion
	Question
	Diapo 24
	Containers mixed blessing
	Diapo 26
	Know who you trust
	Layered architecture
	Bullet proof update
	Security check list

