
Interesting Things You
Didn’t Know You Could

Do With

ZFS
Allan Jude -- ScaleEngine Inc.
allanjude@freebsd.org twitter: @allanjude

Introduction

Allan Jude
● 13 Years as FreeBSD Server Admin
● FreeBSD src/doc committer (focus: ZFS, bhyve, ucl, xo)
● Co-Author of “FreeBSD Mastery: ZFS” and upcoming

“FreeBSD Mastery: Advanced ZFS” with M. W. Lucas
● Architect of the ScaleEngine CDN (HTTP and Video)
● Host of BSDNow.tv & TechSNAP.tv Podcasts
● Use ZFS for large collections of videos, extremely large

website caches, mirrors of PC-BSD pkgs and RaspBSD
● Single Handedly Manage Over 1000TB of ZFS Storage

The Power of ZFS

● Integrated Redundancy (Mirroring, RAID-Z)
● Data Integrity Checking (Checksums, Scrub)
● Pooled Storage (Hot Add Disks)
● Multi-Level Cache (ARC, L2ARC, SLOG)
● Copy-on-Write (no fsck)
● Snapshots and Clones
● Quotas and Reservations
● Transparent Compression (LZ4, GZIP1-9)
● Incremental Replication (zfs send/recv)
● Datasets with Individual Inherited Properties
● Custom Properties
● Fine Grained Delegation

Applying That Power

ZFS has many features, but how can I use
them to solve my problems?

ZFS has a very well designed command line
user interface, making it very easy for a
sysadmin to perform common tasks (add more
storage, create new datasets, change settings
and properties), accomplish things that were
not possible before, as well as extract a great
deal more information from the storage system.

zfs list -Hp -r -o name,refer,logicalreferenced
sestore5/mysql02 22001288628 24331078144
sestore5/omicron 4822821993 12114904064
sestore5/sevu2/mysql 3562667064 4930608640
zfs get -Hpr -t filesystem -o name,value compressratio
sestore5/mysql02 2.06x
sestore5/omicron 9.37x
sestore5/sevu2/mysql 2.97x
zfs list -Hd 1 -o name -s used
zroot/usr
zroot/var
zroot/bootenv

ZFS Was Meant To Be Scripted

An Actual Script
zfs list -Hprt filesystem -o name,refer,logicalreferenced
while read dataset used logical; do

diff=$(($logical - $used))
percent=$(($diff * 100 / $logical * 100 / 100))
if [$diff -gt 0]; then

printf "${dataset}\t${diff}\t${percent}%%\n";
fi

done
Dataset Bytes Saved Percent
sestore5/mysql02 2329603330 9%
sestore5/omicron 7291274343 60%
sestore5/sevu2/mysql 1367950734 27%

Abusing Properties and Inheritance
zfs create -o exec=off \

-o mountpoint=/usr/local zroot/local
zfs create -o canmount=off \

-o mountpoint=/usr/local zroot/local_bin
zfs create zroot/local_bin/bin
zfs create zroot/local_bin/sbin
zfs create -o mountpoint=/usr/local/etc/rc.d \

zroot/local_bin/rc.d
Now Install your files, and lock it down

zfs set readonly=on zroot/local_bin

The Result:

zfs list -o name,mountpoint,readonly
NAME MOUNTPOINT RDONLY
zroot/local /usr/local off
zroot/local_bin /usr/local on **
zroot/local_bin/bin /usr/local/bin on
zroot/local_bin/rc.d /usr/local/etc/rc.d on
zroot/local_bin/sbin /usr/local/sbin on
Files in the bin, rc.d, and sbin directories cannot be
modified, while files in the other directories cannot be
executed. One hierarchy, two parents to inherit from.
** This dataset has canmount=off, so is never actually
mounted. It serves only as a parent to the child datasets.

Delegation

The best way to get more work done, is to
delegate the work to someone else.

ZFS Allows you to delegate fine-grained
permissions to unprivileged users, so they can
control their own data, and stop pestering you.

Most sysadmin try to avoid dealing with “Users”. For this
example, let us say the user’s name is Lucas. Lucas keeps
pestering you to create snapshots of his home directory for
him. As a lazy sysadmin, this annoys you. Give Lucas the
ability to create his own snapshots, but only of his home
directory dataset, and nothing else:
zfs allow -u lucas snapshot,rollback zroot/usr/home/lucas
zfs allow zroot/usr/home/lucas
---- Permissions on zroot/usr/home/lucas -----
Local+Descendent permissions:
 user lucas rollback,snapshot

Unwashed Users...

Not talking about
this Lucas.
I swear.

Self Service == Happy Sysadmin

$ zfs snapshot zroot/usr/home/lucas@chapter2
$ zfs list -t all -r -o name,used zroot/usr/home/lucas
NAME USED
zroot/usr/home/lucas 96K
zroot/usr/home/lucas@chapter2 0
$ zfs snapshot zroot@naughty
cannot create snapshots : permission denied
Destroying snapshots and creating clones
requires the ‘mount’ permission. In order for
users to be able to mount: vfs.usermount=1

Delegation Inheritance

The delegation system allows you to specify if a
delegation is ‘Local’ (Applies only to this dataset),
‘Decendant’ (Applies only to child datasets), or both
(the default).

I want to allow Lucas to destroy the snapshots he
created, but not shoot himself in the foot and destroy
his entire home directory.

Or maybe I want to allow him some permissions only
on the datasets he creates (‘sticky bit’ for delegation),
rather than the entire tree.

zfs allow -d lucas destroy,mount zroot/usr/home/lucas
zfs allow zroot/usr/home/lucas
---- Permissions on zroot/usr/home/lucas -------------------
Descendent permissions:
 user lucas destroy,mount
Local+Descendent permissions:
 user lucas rollback,snapshot
$ zfs destroy -v zroot/usr/home/lucas/desc
will destroy zroot/usr/home/lucas/desc

Avoid Foot Shooting

Sticky Delegation

zfs allow lucas create,mount zroot/usr/home/lucas
zfs allow -c destroy zroot/usr/home/lucas
zfs allow zroot/usr/home/lucas
---- Permissions on zroot/usr/home/lucas -----------------------
Permission sets:
 destroy
Local+Descendent permissions:
 user lucas create,mount,rollback,snapshot
$ zfs create zroot/usr/home/lucas/new
$ zfs destroy -v zroot/usr/home/lucas/new
will destroy zroot/usr/home/lucas/new

Lucas == Evil

However, what if Lucas is incompetent, or evil?
He creates a crontab that takes a snapshot
every minute, or tries to create millions of
snapshots, bogging the system down?
zfs set snapshot_limit=3 zroot/usr/home/lucas
$ zfs snapshot zroot/usr/home/lucas@three
$ zfs snapshot zroot/usr/home/lucas@four
cannot create snapshot 'zroot/usr/home/lucas':
out of space

Jails

Of course, I distrust Lucas too much to allow him to have a
regular user account on my server. Instead, I lock him up in
a jail, where I can let him run rabbid without worry.
zfs create -o jailed=on -o mountpoint=/jail \

zroot/jails/lucas/jail
jail -c path=/zroot/jails/lucas \

mount.devfs allow.mount allow.mount.zfs \
host.hostname=lucas ip4.addr=127.0.0.2 \
exec.poststart = \
"/sbin/zfs jail lucas zroot/jails/lucas/jail"; \
command=/bin/sh

Jailing a Dataset

jexec lucas sh
jail# zfs create zroot/jails/lucas/jail/foo
jail# zfs list -o name,mountpoint
NAME MOUNTPOINT
zroot /zroot
zroot/jails /zroot/jails
zroot/jails/lucas /zroot/jails/lucas
zroot/jails/lucas/jail /jail
zroot/jails/lucas/jail/foo /jail/foo

Containers Are Good
Now Lucas can do whatever he needs to do, set mount
points, create and destroy datasets, delegate datasets
to regular users inside the jail, etc.

The only thing he cannot do, is change the quota on a
dataset, as this might allow him to gain access to more
space than I have allocated to him. Otherwise, from
inside the jail, it is hard to tell that you don’t control the
entire zpool.

Now if only it was that easy to keep Lucas users from
breaking things in the real world.

ZFS Diff

ZFS lets you determine the differences
between a live dataset and a snapshot, or
between two snapshots. Much quicker than
rsync et all to determine just which files have
been modified, rather than stat()’ing every file.

Also useful for forensics. What changed in this
dataset after the web server jail was
compromised? That sshd binary definitely
shouldn’t have changed...

Finding Out What Happened

zfs diff zroot/bootenv/default@before_freebsd_update_p0
M /boot/kernel/ahd.ko (+1)

…
M /boot/kernel/geom_concat.ko (+1)
+ /lib/libbsdxml.so.4
+ /bin/freebsd-version
+ /rescue/sync
+ /usr/bin/netstat
+ /usr/lib/libbsdxml.a
+ /usr/lib/libbsdxml_p.a
+ /usr/sbin/vidcontrol

Poking The Innards

A number of utilities and commands exist to get
at the real innards of ZFS. Quick overview:
● zfs send … | zstreamdump
● zdb -mmm … (metaslab free, fragmentation)
● zdb -dddd ds obj (details of obj# in dataset)
● zdb -ii pool (what is in your ZIL)
● zdb -bbb (search for free space leaks and

breakdown space usage by object type)
● zpool clear (reset the checksum and

read/write error counters)

Store Configuration in Properties

ZFS User Properties are an interesting place to
store configuration. If you jail, VM, or iSCSI
target stores its configuration as properties of
the ZFS dataset (or zvol), the settings move
with the dataset when it is replicated.

Currently, it seems that dataset properties are
limited to 8kb of storage each, although it is not
clear if this limit is intentional

bhyve config on a zvol

zfs get -o property,value all zroot/vm0001
bhyve:cpus 4
bhyve:memory 2048
bhyve:console /dev/nmdm0001A
bhyve:networks [{type:virtio-net,name:tap7]
bhyve:disks [{ type:ahci-hd,

path:/dev/zvol/zroot/disk0001 }, {
type:ahci-hd, path:/dev/zvol/zroot/disk0002 }]

Lightning Round
● zfs create -p (like mkdir -p)
● zfs rename -u (do not remount, yet)
● zfs destroy -rvn dataset@fromsnap%tosnap

(estimate how much space will be freed by
recursively removing this range of snapshots)

● zfs rename -r fromsnap tosnap (rename a set of
recursive snapshots)

● zfs inherit -S (unset received properties)
● zfs get usedby{dataset,snapshots,children,refresv}
● zfs set volmode=dev p/ds (doesn’t apply until the

device is recreated @ boot)
○ zfs rename p/vol p/vol1; zfs rename p/vol1 p/vol

● zfs create -o casesensitivity=insensitive (Mac/Win)

Upcoming Features in ZFS

A lot of new things are coming to ZFS “Soon”™
● Resumable Send
● Replication Record Checksums
● Receive Prefetch
● Compressed ARC
● Persistent L2ARC
● VDEV Removal (Stripe and Mirrors Only)
● Allocation Throttle (Write Bandwidth)
● New Prefetch Algorithms
● More Checksums (SHA512, Skein, Edon-R)

More Upcoming ZFS Features

● Compressed Send
○ Current Process: Uncompress, Transmit, Compress
○ New Process: Transmit, Uncompress, Compress
○ Since network is usually bottleneck, this achieves

better performance. Maybe it could avoid the
recompress step as well, if algos are the same

● Channel Programs (Multiple Commands In a
Single Atomic Transaction)

● Fast File Cloning
● Dedup Throttle (and Dedicated DDT L2ARC)
● JSON CLI Output

Future Ideas for ZFS

● Replication Rebase (Catch up to a newer
snapshot without a common snapshot)

● HA/FO Features (Multi-Modifier Protection)
● Clustered Features
● Tiered Storage (NVMe/SSD -> HDD ->

Tape)
● Compatibility with Host-Aware SMR

(Shingled Magnetic Recording) Drives
● Per dataset I/O stats
● Per dataset or jail/zone I/O QoS
● Separate VDEVs for Metadata, or Datasets

OpenZFS Developers Summit

The third annual OpenZFS Developer Summit
will be held in San Francisco, October 19 - 20,
2015. This will be the 10th anniversary of the
open sourcing of ZFS! All OpenZFS developers
are invited to participate.

First day: Presentations and Talks, followed by
Beer Bash and Dinner
Second Day: Hackathon with prizes

The Book

● 188 pages of easy reading
● DRM-Free ebook or Print Edition
● How hardware affects ZFS
● Configure datasets
● Repair and monitor storage pools
● Expand your storage
● How compression enhances

performance
● How copy-on-write works
● Understand how ZFS uses and

manages space
● Buy it at ZFSBook.com

The Next Book

FreeBSD Mastery: Advanced ZFS

Still being written, will cover more depth and
internals. How to deal with pathological
performance, advanced features, and what to
do when things go wrong.

If you have ever had trouble with ZFS, tell us
about it, so we can add it to the book.

Look for it before the end of the year.

Podcasts
BSDNow.tv is a weekly video podcast featuring
News, Interviews and Tutorials about the BSD
family of Operating Systems. Hosted by Kris
Moore (founder of PC-BSD) and Myself.

TechSNAP.tv is a weekly sysadmin video podcast
covering an OS agnostic range of security and
production issues for those working, studying or
interested in the sysadmin / devops / infosec field.

Twitter: @allanjude Email: allanjude@freebsd.org

