oVirt and Gluster hyper-converged!
HA solution for maximum resource utilization

31st of Jan 2016

Martin Sivák
Senior Software Engineer
Red Hat Czech
Agenda

- (Storage) architecture of oVirt
- Possible failure points in standard oVirt setup
- Hosted engine refresher and improvements
- Gluster in a nutshell
- Putting it all together – hyper converged infrastructure
 - Architecture
 - Setup
 - Management
oVirt is a virtualization platform to manage virtual machines, storage and networks

- **Engine (ovirt-engine)**
 Manages the oVirt hosts, and allows system administrators to create and deploy new VMs

- **Host Agent (VDSM)**
 oVirt engine communicates with VSDM to manage the VMs, storages and networks
oVirt storage

• Storage Domains
 • Centralized storage system (images, templates, etc.)
 • A standalone storage entity
 • Stores the images and associated metadata
 • Only real persistent storage for VDSM
 • Used for synchronization (sanlock)

• Storage types
 • NFS, FCP, iSCSI
 • Gluster
Possible failure points

- **Engine machine**
 - Single point of failure
 - Cluster paralyzed without engine

- **Storage connection**
 - Data safe but unreachable
 - All synchronization in oVirt is storage based
 - neither NFS nor iSCSI provide redundancy
Removing failure points

- Single ovirt-engine host manages the whole datacenter
 - Using a VM to run ovirt-engine reduces HW failure risks
 → Hosted Engine

- Single storage access infrastructure provides data
 - Data itself are safe – can be replicated using RAID
 - Infrastructure is not – distributed access mechanism is needed
 → Gluster
Hosted engine

- Management running inside a VM
- Can be migrated to a different node
- High availability
- Special agent for monitoring
- Storage based synchronization
- Bootstrap deployment needed
Improvements needed for HC

- GlusterFS support re-added to setup
 - With gfapi support!
- oVirt-engine appliance
 - preconfigured management VM
 - cloud-init based customization
- Shared configuration
 - all nodes see the same configuration data
 - upgrade path from oVirt 3.5
- Management GUI for the oVirt-engine VM and HE
GlusterFS and its Architecture

- GlusterFS is a general purpose scale-out distributed file-system supporting thousands of clients
- Aggregates storage exports over network interconnect to provide a single unified namespace
- File-system completely in userspace, runs on commodity hardware
- Layered on disk file systems that support extended attributes
GlusterFS Bricks

- A brick is an export directory located on a specific node (e.g. host-01:/srv/fs1/brick1)
- Each brick inherits limits of the underlying file-system
- No limit on the number bricks per node (as best-practice each brick in a cluster should be of the same size)
GlusterFS Volumes

- A volume (the mountable entity) is a logical collection of bricks
- Bricks from the same node can be part of different volumes
- Different types of Volumes
 - Distribute, Stripe, Replicate (+ combinations), Quorum
- Type of a volume is specified at the time of volume creation and determines how and where data is placed
QEMU libgfapi Support

- GlusterFS exposes APIs for accessing Gluster volumes
- Reduces context switches

FUSE Access

- **QEMU**
 - Userspace
 - Kernel

- **GlusterFS**
 - Net
 - /dev/fuse

- **Gluster Brick**
 - Net
 - File-System

- **Client**
 - Kernel VFS
 - Userspace

- **Server**
 - Userspace
 - Kernel
QEMU libgfapi Support

- GlusterFS exposes APIs for accessing Gluster volumes
- Reduces context switches

libgfapi Access

QEMU
Userspace
Kernel

Gluster Brick
Userspace
Kernel

Net
Net

File-System

But see: https://bugzilla.redhat.com/show_bug.cgi?id=1247933
Puting it all together

- oVirt cluster
- Glusterfs backed storage domain
- Hosted engine to maintain HA of the management
- Pre-configured management using an OVF image

Are you feeling lucky?

Due to unexpected issues the automatic HC deployment was **removed from 3.6**. It is still possible to configure most of the HC setup manually.
Hyberconverged oVirt – GlusterFS

- The Data Center nodes are used both for virtualization and serving replicated images from the GlusterFS Bricks
- Engine runs inside a VM (Hosted Engine)
- The boxes can be standardized (hardware and deployment) for easy addition and replacement
- Support for both scaling up, adding more disks, and scaling out, adding more hosts
Hyper converged setup – ingredients

- at least 3 virtualization capable hosts (CentOS 7.1+)
- 10 GB of temporary space on the primary host
- two separate partitions for data (20GB+) on all hosts
- DHCP configured to map a MAC address to a fixed IP
- DNS configured with A and PTR names for the IP
- oVirt release package installed on all hosts

 http://resources.ovirt.org/pub/yum-repo/ovirt-release36.rpm

- Physical console on the primary host or network access and screen package installed
Gluster volume setup

- **Replica 3 volume required**

```bash
# execute on all hosts
yum install glusterfs-server
systemctl enable glusterfs-server
systemctl start glusterfs-server
mkdir -p /srv/gluster/hosted-engine/brick

# Execute on the first host you are going to deploy
gluster peer probe <address another host>  # for each host in the HC cluster
gluster volume create hosted-engine replica 3 \  
<host1>:/srv/gluster/hosted-engine/brick \  
<host2>:/srv/gluster/hosted-engine/brick \  
<host3>:/srv/gluster/hosted-engine/brick \  
...  
gluster volume start hosted-engine
```

- **This step will be automated by the setup tool once remaining bugs are solved**
Gluster volume setup – cont.

Execute on the first host you are going to deploy
gluster volume set hosted-engine cluster.quorum-type auto
gluster volume set hosted-engine network.ping-timeout 10
gluster volume set hosted-engine auth.allow *
gluster volume set hosted-engine group virt
gluster volume set hosted-engine storage.owner-uid 36
gluster volume set hosted-engine storage.owner-gid 36

Optionally you can tweak the gluster volume a bit more..
gluster volume set hosted-engine features.shard on
gluster volume set hosted-engine features.shard-block-size 512MB
gluster volume set hosted-engine cluster.data-self-heal-algorithm full
gluster volume set hosted-engine performance.low-prio-threads 32
yum install -y ovirt-engine-appliance ovirt-hosted-engine-setup
yum install -y vdsm-gluster glusterfs-server
ovirt-hosted-engine-setup
...
Please specify the storage you would like to use: glusterfs
Please specify the full shared storage connection path to use: <ip1>:/hosted-engine
[INFO] GlusterFS replica 3 Volume detected
...

Please specify the device to boot the VM from [disk]: disk
The following appliance have been found on your system:
 [1] – The oVirt Engine Appliance image (OVA) – 20150802.0-1.el7.centos
Please select an appliance (1, 2): 1
...
Please specify the memory size of the appliance in MB: 16384
Would you like to use cloud-init to customize the appliance on the first boot?: Yes
Please provide the FQDN you would like to use for the engine appliance: <engine fqdn>
...
Hosted engine - recipe

You may specify a unicast MAC address for the VM: <MAC assoc. with the FQDN>

--- Configuration Preview ---

Please confirm installation settings: Yes

- Quite lot of questions and lines were omitted for brevity, but the answers to those are not “too important” for successful installation of hosted engine.
- You can watch a full appliance installation (using NFS storage) video on YouTube: https://www.youtube.com/watch?v=ODJ_UO7U1WQ
Finishing setup of the oVirt cluster

- You should now have a running single node oVirt
- Log in to the management
- Make sure Gluster support is enabled
- Add remaining nodes
- Create and add the main storage domain
Enabling GlusterFS

- Gluster Service support is located in the Cluster properties
- Deploy Hosts with GlusterFS Server support
- Enable Bricks and Volume Management from oVirt WebAdmin and REST-API
- Engine is not taking in consideration GlusterFS on Virtualization Power-Saving policies and Fencing yet
Adding additional nodes

- Simple checkbox during in the Add host dialog
- Host deploy script does everything else auto-magically
Adding Gluster storage

- It is possible to create and manage Gluster Volumes from WebAdmin and using the REST-API

- Volume Profiling
- Volume Capacity Monitoring

New Volume

<table>
<thead>
<tr>
<th>Data Center</th>
<th>MixedDataCenter1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume Cluster</td>
<td>MixedCluster1</td>
</tr>
<tr>
<td>Name</td>
<td>Volume1</td>
</tr>
<tr>
<td>Type</td>
<td>Distribute</td>
</tr>
</tbody>
</table>

Transport Type

- TCP
- RDMA

Bricks

- Add Bricks
- (0 bricks selected)

Access Protocols

- Gluster
- NFS
- CIFS

Data Centers

<table>
<thead>
<tr>
<th>Name</th>
<th>Cluster</th>
<th>Volume Type</th>
<th>Bricks</th>
<th>Space Use</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>ovirt-datal</td>
<td>MixedCluster1</td>
<td>Replicate</td>
<td>▲ 1 ▼ 0</td>
<td>88%</td>
<td></td>
</tr>
<tr>
<td>ovirt-datal2</td>
<td>MixedCluster1</td>
<td>Replicate</td>
<td>▲ 2 ▼ 0</td>
<td>88%</td>
<td></td>
</tr>
</tbody>
</table>

Geo-Replication

<table>
<thead>
<tr>
<th>Server</th>
<th>Brick Directory</th>
<th>Space Used</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>vm-ovirt01.vn1.bytenik.com</td>
<td>/srv/glusters/ovirt-data1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vm-ovirt02.vn1.bytenik.com</td>
<td>/srv/glusters/ovirt-data1</td>
<td>12%</td>
<td></td>
</tr>
</tbody>
</table>
Now just add the volume as a new storage domain, wait for data center to initialize and enjoy your new HA setup.

The next important topic is management ...
Engine's VM management

- Support for editing the Hosted Engine VM
- Memory and CPU allocation, network configuration
- Work in progress..

- Distributed to all hosted engine nodes using OVF file on the storage domain
- Hosted engine daemons pick up the configuration when the management VM is restarted
Hosted engine management

- Reporting configuration
 - State transitions
 - SMTP details
- Timeout configuration
 - Allowed downtime before forced recovery
- Host scoring constants and rules
What is missing from oVirt 3.6?

- Automated hyper-converged setup
 - Removed at the last moment because of unresolved issues
- Full support for managing the oVirt engine VM
 - Missed the feature deadline, will be available soon
- Hosted engine configuration UI

- Support for multiple Gluster brick servers not ideal
 - issue with VM startup – see qemu bug #1247933
 - but HA properly maintained during operation
THANK YOU!

http://wiki.ovirt.org/wiki/Category:SLA
users@ovirt.org
devel@ovirt.org

#ovirt irc.oftc.net
Links