
1

Shenandoah: Theory and

Practice

Christine Flood Roman Kennke
Principal Software Engineers
Red Hat

2

Shenandoah

Christine Flood Roman Kennke
Principal Software Engineers
Red Hat

3

Shenandoah

● Why do we need it?

● What does it do?

● How does it work?

● What's the current state?

● What's left to do?

● Performance

4

GC is like an omniscient organizer for program
memory.

I bet that's
your messy

 pantry isn't it?

5

Stack Frame
Method Foo

Heap

Reference

42Value

Reference

Stack Frame
Method Bar

Reference

Value 6.847

Reference

Reference

Object

Object

Object

Object

Array

ObjectObjectObjectObjectObjectObjectObject

Reference

Object

Java execution

6

When we reorganize objects we need to copy the
objects and update the stack locations to point to
their new addresses.

Stack Frame
Method Foo

Heap

Reference

42Value

Stack Frame
Method Bar

Value 6.847

Reference

Object Copy

ObjectObjectObjectObjectObjectObjectObjectObject

Reference

7

Why yet another garbage collector?

● OpenJDK already has 4 collectors:
● Serial
● Parallel
● Concurrent Mark Sweep
● G1

8

Why yet another garbage collector?

● OpenJDK already has 4 collectors:
● Serial (minimal collector)
● Parallel (high throughput)
● Concurrent Mark Sweep (low pause time, but...)
● G1 (low/managed pause time, but...)

9

But?

● All existing collectors must (occasionally) compact
old-gen or the whole heap

● .. and therefore stop the world

● …. for a long time, if heap is large

10

Shenandoah!

● Aims to reduce GC pause times

● Goal: <10ms pauses for >100GB heaps

● More precisely:
● Make GC pauses independent of heap size

● Long-term goal: pauseless GC

11

How do we do it?

● Evacuate concurrently with Java threads

12

Garbage-First (G1)

JavaInit
Mark

Java Final
Mark

Concurrent Mark

EvacuationJava

13

Shenandoah: Current implementation

Java
Init
Mark

Java Final
Mark

Concurrent Mark Concurrent Evacuation

Java

We choose our collection set to
Minimize amount of copying.

We have a plan for removing
all of the stop the world pauses.

14

Stack Frame
Method Foo

Heap

Reference

42Value

Stack Frame
Method Bar

Value 6.847

Reference

Object Copy

ObjectObjectObjectObjectObjectObjectObjectObject

Reference

Wait, are you moving
those objects while
the program is running?

15

How do we do that?

We recycle an idea from the 1980's and add a level

of indirection.

16

Forwarding Pointers based on Brooks Pointers

● Rodney A. Brooks “Trading Data Space for
Reduced Time and Code Space in Real-Time
Garbage Collection on Stock Hardware”

1984 Symposium on Lisp and Functional
Programing

17

Forwarding Pointer

● Object layout inside
the JVM remains the
same.

● Third party tools can
still walk the heap.

● Can choose GC
algorithm at run time.

● We hope to one day
be able to take
advantage of unused
space in double word
aligned objects when
possible.

Foo

Foo indirection pointer

18

Forwarding Pointers

Any reads or writes of A will now be redirected
to A'. We don't need to update Foo
immediately.

A

B

From-Region To-Region

A'
Foo

19

How to move an object while the program is
running.

● Read the forwarding pointer to from space.

● Allocate a temporary copy of the object in to space.

● Copy the data.

● CAS the forwarding pointer.
● If you succeed carry on.
● If you fail, use the copy that was placed by the

thread that beat you and recycle your temporary
copy.

20

Forwarding Pointers

Reading an object in a From-region doesn't
trigger an evacuation.

A

B

From-Region To-Region

Note: If reads were to cause copying we might have a “read storm” where every operation
required copying an object. Our intention is that since we are only copying on writes we
will have less bursty behavior.

21

Forwarding Pointers

Writing an object in a From-Region will trigger
an evacuation of that object to a To-Region
and the write will occur in there.

From-Region To-Region

A

B

A'

22

How does Java code know where the real object
is?

● Reads, writes, amps and some others are wrapped
by code that ensures the correct objects are
accessed:

● Read barriers

● Write barriers

● Acmp / cmpxchg barriers

23

Read Barriers

● Read the forwarding pointer to access the
forwarded object.

● Does not trigger evacuation

● If a write occurs concurrently, it's a race, but it's
been a race before :-)

● Usually compiles into a single mov instruction

24

Write Barriers

● Ensures that writes only happen in to-space

● It does so by speculatively making a copy, then
CASing the forwarding pointer in the object

● If CAS succeeds, we win. If not, we roll back the
allocation, and use whatever the other thread did

● … but only for objects in collection set, and only if
evacuation is currently in progress

● … otherwise it's a simple read barrier

25

Acmp barriers

● If we compare a == a', we can get false negatives

● Therefore, if an object comparison fails, we resolve
both operands through a read barrier, then try again.

●

26

CmpXChg Barriers

● compareAndSwapObject() combines all three,
because it loads, compares and writes an object
field

● We insert a somewhat complex barrier that
● Resolves the written value (read-barrier)
● Ensures to-space copy (write-barrier)
● Prevents false negative (acmp-barrier)

27

How are barriers implemented?

● Need two types of barriers:
● Read barrier - read brooks pointer
● Write barrier – maybe copy obj & update brooks ptr

● oop read_barrier(oop obj)

● oop write_barrier(oop obj)

Shenandoah barriers

oop read_barrier(oop obj) {

 return *(obj-0x8);

}

Shenandoah barriers

oop write_barrier(oop obj) {

 if (evacuation_in_progress) {

 return runtime_wbarrier(obj);

 }

 return obj;

}

Shenandoah barriers

● Read barriers:
– getfield

– Xaload

– Intrinsics

– Some esoteric stuff

Shenandoah barriers

● Write barriers:
– putfield

– Xastore

– Intrinsics

– Some esoteric stuff

Shenandoah barrier example

// Method without barriers
void doStuff(TypeA a, TypeA b) {
 for (..) {
 a.x = 3; // putfield
 System.out.println(b.x); // getfield
 }
}

// Same method with Shenandoah barriers
void doStuff(TypeA a, TypeA b) {
 for (..) {
 a = write_barrier(a);
 a.x = 3; // putfield
 b = read_barrier(b);
 System.out.println(b.x); // getfield
 }
}

Shenandoah barriers

● Barriers are inserted by:
– The interpreter

– The C1 compiler

– The C2 compiler

– By us, hardcoded in the runtime

Shenandoah barriers

● Initial implementation showed disheartening
performance: more than 50% slower than with
other Gcs

● So how did we make it fast?

Shenandoah barriers

● How to optimize barriers?
– Make barrier more efficient

– Eliminate barriers

– Optimize barrier placement

Shenandoah barriers

● Making barriers more efficient
– Eliminate null-checks

– Inline null-checks

– Inline evacuation-in-progress checks

– Inline in-collection-set checks

→ Only call runtime when really necessary

Shenandoah barriers

● Eliminate barriers
● We don't need barriers:

– For known NULL objects

– For inlined constants

– For newly allocated objects

– After write barriers

● Since we can only figure most of this out after
parsing, this isn't possible to do with parse-time
barriers

Eliminate barriers on null objects

bool isNull(Type a) {
 Type b = null;
 a' = read_barrier(a);
 b' = read_barrier(b);
 return a' == b';
}

Eliminate barriers on null objects

bool isNull(Type a) {
 Type b = null;
 a' = read_barrier(a); // Dont care
 b' = read_barrier(b); // Known null
 return a' == b';
}

Eliminate barriers on null objects

bool isNull(Type a) {
 Type b = null;
 return a == b;
}

Eliminate barriers on constants

static final Type A = ...;
int getFoo() {
 return A.foo;
}

Eliminate barriers on constants

static final Type A = ...;
int getFoo() {
 Type A' = read_barrier(A);
 return A'.foo;
}

Eliminate barriers on constants

static final Type A = ...;
int getFoo() {
 // Constants are always in to-space
 Type A' = read_barrier(A);
 return A'.foo;
}

Eliminate barriers on new objects

int getFoo() {
 Type a = new Type();
 a' = read_barrier(a);
 return a'.foo;
}

Eliminate barriers on new objects

int getFoo() {
 Type a = new Type();
 // New objects are always in to-space
 a' = read_barrier(a);
 return a'.foo;
}

Eliminate barriers on new objects

int getFoo() {
 Type a = new Type();
 return a.foo;
}

Eliminate barriers after write barriers

int getFoo(Type a) {
 a' = write_barrier(a);
 a'.bar = …;
 a'' = read_barrier(a');
 return a''.foo;
}

Eliminate barriers after write barriers

int getFoo(Type a) {
 a' = write_barrier(a);
 a'.bar = …;
 // a' already in to-space
 a'' = read_barrier(a');
 return a''.foo;
}

Eliminate barriers after write barriers

int getFoo(Type a) {
 a' = write_barrier(a);
 a'.bar = …;
 return a'.foo;
}

Optimize barrier placement

● Hoist barriers out of hot loops

Example

void doStuff(TypeA a, TypeZ z) {
 for (…) {
 Call(); // Safepoint
 for (…) {
 a = write_barrier(a);
 a.x = foo;
 z = read_barrier(z);
 System.out.println(z.y);
 }
 }

Example

void doStuff(TypeA a, TypeZ z) {
 a = write_barrier(a);
 for (…) {
 Call(); // Safepoint
 for (…) {
 a.x = foo;
 z = read_barrier(z);
 System.out.println(z.y);
 }
 }

Example

void doStuff(TypeA a, TypeZ z) {
 a = write_barrier(a);
 z = read_barrier(z);
 for (…) {
 Call(); // Safepoint
 for (…) {
 a.x = foo;
 System.out.println(z.y);
 }
 }

Lessons learned

● Basic algorithm pretty easy
● Hard parts:

– Finding all the right places where to insert barriers

– Support all JVM peculiarities:
● Weak references
● JNI Critical regions
● System.gc()

– Compiler support and optimization

55

Status

● Feature complete

● Stable (beta-quality)

● Good performance (see later…)

● Established OpenJDK project:
http://openjdk.java.net/projects/shenandoah/

● Got nightly builds:
● https://adopt-openjdk.ci.cloudbees.com/view/OpenJDK/

(Thanks Adopt-OpenJDK!!)

http://openjdk.java.net/projects/shenandoah/
https://adopt-openjdk.ci.cloudbees.com/view/OpenJDK/

56

Future Work (last year)

● Finish big application testing.

● Move the barriers to right before code generation.

● Barrier-specific C2 opts?

● Exploit Java Memory Model?

● Heuristics tuning!

● Generational Shenandoah?

● Remembered Sets for updating roots and freeing
memory sooner?

● Round Robin Thread Stopping?

● NUMA Aware?

57

Future Work (now)

● Finish big application testing.

● Move the barriers to right before code generation.

● Barrier-specific C2 opts?

● Exploit Java Memory Model?

● Heuristics tuning!

● Generational Shenandoah?

● Remembered Sets for updating roots and freeing
memory sooner?

● Round Robin Thread Stopping? (2.0)

● NUMA Aware? (2.0)

58

Releases?

● First in Fedora 24

● JDK 10

● JEP 189: http://openjdk.java.net/jeps/189

http://openjdk.java.net/jeps/189

59

Performance

● SPECjbb2015

compiler
compress

crypto
derby

mpegaudio
scimark.large

scimark.small
serial

startup
sunflow

xml
total

0

200

400

600

800

1000

1200

1400

1600

Shenandoah

G1

Throughput: Shenandoah: 374ops/m G1: 393ops/m (95%, min 80%, max 140%)
Pauses: Shenandoah: avg: 41ms, max: 202ms

G1: avg: 240ms, max: 1126ms

- 32 cores
- 160GB RAM, 140GB heap

60

Performance SPECjbb2015

● Max-jops: maximum throughput

● Critical-jops: throughput under response-time-
constraints (SLA)

G1 Shenandoah

Max-jops 18117 16899 93%

Critical-jops 4294 7990 186%

Pause avg 862ms 24.6ms

Pause max 2054ms 78.61

61

Performance Radargun/Infinispan

Throughput:

G1: 940,065 reqs/s Shenandoah: 1,202,925 reqs/s

62

Performance Radargun/Infinispan

Response time percentiles

Beware the scales!

63

LRU test

● Simple handwritten LRU cache benchmark

● ParallelGC: 116091ms / 100000 ops

● G1: 98598ms / 100000 ops

● Shenandoah: 56698ms / 100000 ops

64

Please test

● Download and build:
● http://hg.openjdk.java.net/shenandoah

● Or use nightly builds:
● https://adopt-openjdk.ci.cloudbees.com/view/OpenJDK/job/project-shenandoah-jdk9/

● https://adopt-openjdk.ci.cloudbees.com/view/OpenJDK/job/project-shenandoah-jdk8/

● Report issues or success stories to:
● http://mail.openjdk.java.net/mailman/listinfo/shenandoah-dev

http://hg.openjdk.java.net/shenandoah
https://adopt-openjdk.ci.cloudbees.com/view/OpenJDK/job/project-shenandoah-jdk9/
https://adopt-openjdk.ci.cloudbees.com/view/OpenJDK/job/project-shenandoah-jdk8/

65

References

● http://openjdk.java.net/projects/shenandoah/

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65

