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Shenandoah

● Why do we need it?

● What does it do?

● How does it work?

● What's the current state?

● What's left to do?

● Performance
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GC is like an omniscient organizer for program 
memory.

I bet that's 
your messy

 pantry isn't it?
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When we reorganize objects we need to copy the 
objects and update the stack locations to point to 
their new addresses.
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Why yet another garbage collector?

● OpenJDK already has 4 collectors:
● Serial
● Parallel
● Concurrent Mark Sweep
● G1
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Why yet another garbage collector?

● OpenJDK already has 4 collectors:
● Serial (minimal collector)
● Parallel (high throughput)
● Concurrent Mark Sweep (low pause time, but...)
● G1 (low/managed pause time, but...)
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But?

● All existing collectors must (occasionally) compact 
old-gen or the whole heap

● .. and therefore stop the world

● …. for a long time, if heap is large
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Shenandoah!

● Aims to reduce GC pause times

● Goal: <10ms pauses for >100GB heaps

● More precisely:
● Make GC pauses independent of heap size

● Long-term goal: pauseless GC
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How do we do it?

● Evacuate concurrently with Java threads
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Shenandoah: Current implementation

Java
Init 
Mark

Java Final
Mark

Concurrent Mark Concurrent Evacuation

Java

We choose our collection set to 
Minimize amount of copying.

We have a plan for removing 
all of the stop the world pauses.
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How do we do that?

We recycle an idea from the 1980's and add a level

of indirection.
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Forwarding Pointers based on Brooks Pointers 

● Rodney A. Brooks “Trading Data Space for 
Reduced Time and Code Space in Real-Time 
Garbage Collection on Stock Hardware”

1984 Symposium on Lisp and Functional 
Programing
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Forwarding Pointer 

● Object layout inside 
the JVM remains the 
same.

● Third party tools can 
still walk the heap.

● Can choose GC 
algorithm at run time.

● We hope to one day 
be able to take 
advantage of unused 
space in double word 
aligned objects when 
possible.

Foo

Foo indirection pointer
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Forwarding Pointers

Any reads or writes of A will now be redirected 
to A'.  We don't need to update Foo 
immediately.

A

B

From-Region To-Region

A'
Foo
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How to move an object while the program is 
running.

● Read the forwarding pointer to from space.

● Allocate a temporary copy of the object in to space.

● Copy the data.

● CAS the forwarding pointer.
● If you succeed carry on.
● If you fail, use the copy that was placed by the 

thread that beat you and recycle your temporary 
copy.
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Forwarding Pointers

Reading an object in a From-region doesn't 
trigger an evacuation.

A

B

From-Region To-Region

Note: If reads were to cause copying we might have a “read storm” where every operation
required copying an object.  Our intention is that since we are only copying on writes we 
will have less bursty behavior.
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Forwarding Pointers

Writing an object in a From-Region will trigger 
an evacuation of that object to a To-Region 
and the write will occur in there.  

From-Region To-Region

A

B

A'
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How does Java code know where the real object 
is?

● Reads, writes, amps and some others are wrapped 
by code that ensures the correct objects are 
accessed:

● Read barriers

● Write barriers

● Acmp / cmpxchg barriers
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Read Barriers

● Read the forwarding pointer to access the 
forwarded object.

● Does not trigger evacuation

● If a write occurs concurrently, it's a race, but it's 
been a race before :-)

● Usually compiles into a single mov instruction
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Write Barriers

● Ensures that writes only happen in to-space

● It does so by speculatively making a copy, then 
CASing the forwarding pointer in the object

● If CAS succeeds, we win. If not, we roll back the 
allocation, and use whatever the other thread did

● … but only for objects in collection set, and only if 
evacuation is currently in progress

● … otherwise it's a simple read barrier
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Acmp barriers

● If we compare a == a', we can get false negatives

● Therefore, if an object comparison fails, we resolve 
both operands through a read barrier, then try again.

●
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CmpXChg Barriers

● compareAndSwapObject() combines all three, 
because it loads, compares and writes an object 
field

● We insert a somewhat complex barrier that
● Resolves the written value (read-barrier)
● Ensures to-space copy (write-barrier)
● Prevents false negative (acmp-barrier)
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How are barriers implemented?

● Need two types of barriers:
● Read barrier - read brooks pointer
● Write barrier – maybe copy obj & update brooks ptr

● oop read_barrier(oop obj)

● oop write_barrier(oop obj)



Shenandoah barriers

oop read_barrier(oop obj) {

  return *(obj-0x8);

}



Shenandoah barriers

oop write_barrier(oop obj) {

  if (evacuation_in_progress) {

    return runtime_wbarrier(obj);

  }

  return obj;

}



Shenandoah barriers

● Read barriers:
– getfield

– Xaload

– Intrinsics

– Some esoteric stuff



Shenandoah barriers

● Write barriers:
– putfield

– Xastore

– Intrinsics

– Some esoteric stuff



Shenandoah barrier example

// Method without barriers
void doStuff(TypeA a, TypeA b) {
  for (..) {
    a.x = 3;                 // putfield
    System.out.println(b.x); // getfield
  }
}

// Same method with Shenandoah barriers
void doStuff(TypeA a, TypeA b) {
  for (..) {
    a = write_barrier(a);
    a.x = 3;                 // putfield
    b = read_barrier(b);
    System.out.println(b.x); // getfield
  }
}



Shenandoah barriers

● Barriers are inserted by:
– The interpreter

– The C1 compiler

– The C2 compiler

– By us, hardcoded in the runtime



Shenandoah barriers

● Initial implementation showed disheartening 
performance: more than 50% slower than with 
other Gcs

● So how did we make it fast?



Shenandoah barriers

● How to optimize barriers?
– Make barrier more efficient

– Eliminate barriers

– Optimize barrier placement



Shenandoah barriers

● Making barriers more efficient
– Eliminate null-checks

– Inline null-checks

– Inline evacuation-in-progress checks

– Inline in-collection-set checks

→ Only call runtime when really necessary



Shenandoah barriers

● Eliminate barriers
● We don't need barriers:

– For known NULL objects

– For inlined constants

– For newly allocated objects

– After write barriers

● Since we can only figure most of this out after 
parsing, this isn't possible to do with parse-time 
barriers



Eliminate barriers on null objects

bool isNull(Type a) {
  Type b = null;
  a' = read_barrier(a);
  b' = read_barrier(b);
  return a' == b';
}



Eliminate barriers on null objects

bool isNull(Type a) {
  Type b = null;
  a' = read_barrier(a); // Dont care
  b' = read_barrier(b); // Known null
  return a' == b';
}



Eliminate barriers on null objects

bool isNull(Type a) {
  Type b = null;
  return a == b;
}



Eliminate barriers on constants

static final Type A = ...;
int getFoo() {
  return A.foo;
}



Eliminate barriers on constants

static final Type A = ...;
int getFoo() {
  Type A' = read_barrier(A);
  return A'.foo;
}



Eliminate barriers on constants

static final Type A = ...;
int getFoo() {
  // Constants are always in to-space
  Type A' = read_barrier(A);
  return A'.foo;
}



Eliminate barriers on new objects

int getFoo() {
  Type a = new Type();
  a' = read_barrier(a);
  return a'.foo;
}



Eliminate barriers on new objects

int getFoo() {
  Type a = new Type();
  // New objects are always in to-space
  a' = read_barrier(a);
  return a'.foo;
}



Eliminate barriers on new objects

int getFoo() {
  Type a = new Type();
  return a.foo;
}



Eliminate barriers after write barriers

int getFoo(Type a) {
  a' = write_barrier(a);
  a'.bar = …;
  a'' = read_barrier(a');
  return a''.foo;
}



Eliminate barriers after write barriers

int getFoo(Type a) {
  a' = write_barrier(a);
  a'.bar = …;
  // a' already in to-space
  a'' = read_barrier(a');
  return a''.foo;
}



Eliminate barriers after write barriers

int getFoo(Type a) {
  a' = write_barrier(a);
  a'.bar = …;
  return a'.foo;
}



Optimize barrier placement

● Hoist barriers out of hot loops



Example

void doStuff(TypeA a, TypeZ z) {
  for (…) {
    Call(); // Safepoint
    for (…) {
      a = write_barrier(a);
      a.x = foo;
      z = read_barrier(z);
      System.out.println(z.y);
    }
  }



Example

void doStuff(TypeA a, TypeZ z) {
  a = write_barrier(a);
  for (…) {
    Call(); // Safepoint
    for (…) {
      a.x = foo;
      z = read_barrier(z);
      System.out.println(z.y);
    }
  }



Example

void doStuff(TypeA a, TypeZ z) {
  a = write_barrier(a);
  z = read_barrier(z);
  for (…) {
    Call(); // Safepoint
    for (…) {
      a.x = foo;
      System.out.println(z.y);
    }
  }



Lessons learned

● Basic algorithm pretty easy
● Hard parts:

– Finding all the right places where to insert barriers

– Support all JVM peculiarities:
● Weak references
● JNI Critical regions
● System.gc()

– Compiler support and optimization
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Status

● Feature complete

● Stable (beta-quality)

● Good performance (see later…)

● Established OpenJDK project: 
http://openjdk.java.net/projects/shenandoah/

● Got nightly builds:
● https://adopt-openjdk.ci.cloudbees.com/view/OpenJDK/

(Thanks Adopt-OpenJDK!!)

http://openjdk.java.net/projects/shenandoah/
https://adopt-openjdk.ci.cloudbees.com/view/OpenJDK/
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Future Work (last year)

● Finish big application testing.

● Move the barriers to right before code generation.

● Barrier-specific C2 opts?

● Exploit Java Memory Model?

● Heuristics tuning!

● Generational Shenandoah?

● Remembered Sets for updating roots and freeing 
memory sooner?

● Round Robin Thread Stopping?

● NUMA Aware?
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Future Work (now)

● Finish big application testing.

● Move the barriers to right before code generation.

● Barrier-specific C2 opts?

● Exploit Java Memory Model?

● Heuristics tuning!

● Generational Shenandoah?

● Remembered Sets for updating roots and freeing 
memory sooner?

● Round Robin Thread Stopping? (2.0)

● NUMA Aware? (2.0)
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Releases?

● First in Fedora 24

● JDK 10

● JEP 189: http://openjdk.java.net/jeps/189

http://openjdk.java.net/jeps/189
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Performance

● SPECjbb2015

compiler
compress

crypto
derby

mpegaudio
scimark.large

scimark.small
serial

startup
sunflow

xml
total
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Shenandoah

G1

Throughput: Shenandoah: 374ops/m G1: 393ops/m (95%, min 80%, max 140%)
Pauses: Shenandoah: avg: 41ms, max: 202ms

G1:                 avg: 240ms, max: 1126ms

- 32 cores
- 160GB RAM, 140GB heap
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Performance SPECjbb2015

● Max-jops: maximum throughput

● Critical-jops: throughput under response-time-
constraints (SLA)

G1 Shenandoah

Max-jops 18117 16899 93%

Critical-jops 4294 7990 186%

Pause avg 862ms 24.6ms

Pause max 2054ms 78.61



61

Performance Radargun/Infinispan

Throughput:

G1: 940,065 reqs/s Shenandoah: 1,202,925 reqs/s
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Performance Radargun/Infinispan

Response time percentiles

Beware the scales!
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LRU test

● Simple handwritten LRU cache benchmark

● ParallelGC: 116091ms / 100000 ops

● G1: 98598ms / 100000 ops

● Shenandoah: 56698ms / 100000 ops
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Please test

● Download and build:
● http://hg.openjdk.java.net/shenandoah

● Or use nightly builds:
● https://adopt-openjdk.ci.cloudbees.com/view/OpenJDK/job/project-shenandoah-jdk9/

● https://adopt-openjdk.ci.cloudbees.com/view/OpenJDK/job/project-shenandoah-jdk8/

● Report issues or success stories to:
● http://mail.openjdk.java.net/mailman/listinfo/shenandoah-dev

http://hg.openjdk.java.net/shenandoah
https://adopt-openjdk.ci.cloudbees.com/view/OpenJDK/job/project-shenandoah-jdk9/
https://adopt-openjdk.ci.cloudbees.com/view/OpenJDK/job/project-shenandoah-jdk8/
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References

● http://openjdk.java.net/projects/shenandoah/
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