
embedded sdr

working with sdks

moritz fischer
 moritz.fischer@ettus.com mfischer

embedded sdr

who here
has
worked
with sdks?

if you develop
for embedded
devices, you
should

why would you
care?

comfort
work in your
environment

speed
workstation
vs. target

clean
(almost) no
leftovers on
target

exceptions ...

if your ghetto hack
consists of one .c file
and compiles in
under a second ...

… or you are getting
ready to release your
product ...

the last one was
kinda important … !!!

DO NOT SHIP STUFF
YOU COMPILED
WITH AN SDK
really DON’T

contents of an sdk:
compilers, headers,
libs, native tools & env
scripts

setting up your environment

$ cd $SDK_PATH
$ source environment-setup-{archspecific}

in our case:
$ source environment-setup-armv7ahf-neon-oe-linux gnueabi

easy to check using
$CC env variable

$ $CC --version
arm-oe-linux-gnueabi-gcc (GCC) 4.9.2
[...]

cross
compiling
hello_fosdem.c

$ cat hello_fosdem.c

#include <stdio.h>
int main(int argc, char *argv[])
{

printf(“hello_fosdem!\n”);
return 0;

}

$ make hello_fosdem

#sdem.c

wasn’t all
that bad,
right?

cross
compiling
with autotools

$./configure \
--host arm-oe-linux \
--prefix=/usr

$ make

#sdem.c

ok …
admittedly
that was a
best case
scenario ...

cross
compiling
with cmake

$ cmake -
DCMAKE_TOOLCHAIN_FILE=<too
lchain file*> \
-
DCMAKE_INSTALL_PREFIX=/usr\
<yoursource>

$ make

*for uhd/gnuradio:
cmake/Toolchains/oe-sdk_cross.
cmake

#sdem.c

alright … we kind
know how to build
stuff… how do we run
it?

well, you could scp it
to the target … or ...

sshfs
for
development

$ mkdir mnt
$ sshfs -o allow_root user@host:
/<fullpath> mnt

$ export
LD_LIBRARY_PATH=mnt/<app
dependent>

$ export
PATH=mnt/<app_dependent>:$PAT
H

sdem.c

suggestion: for
simplicity drop it in a
script

pain point
dependencies

prominent example:
uhd vs. gnuradio vs.
gr-ettus

one (easy) ‘solution’:
install into sdk ...

… however …
this taints
your sdk ...

… and
makes
kitties sad ...

hack:
use staging install dir,
point dependencies
there

$make install DESTDIR=<yourstaging>

install to
staging dir
with cmake

$ make

$ make DESTDIR= \
~/my_staging install

again, sshfs & env mods necessary

sdem.c

downside:
tedious, cmake
sometimes needs to be
clubbed to happiness

yocto’s extensible sdks
do somewhat address
this … see paul
eggleton’s talk at
elc2015

but: developer needs
to learn about yocto
tools ...

… but doing this he
saves time when he
later packages stuff
for release ...

… because if he doesn’t it’
s just kittehz will be even
sadder ...

keypoints
no releases from sdk,
getting started is
easy,
death to building on
the device

$ diff
who will
now try
sdks?

now go and hack
some
#cyberspectrum…

… or ask questions

