Why an SDR?

- Have something useful way after camp
- Don't just put some sensor on it that next phone generation has by default
- Give an SDR to people who would not get one otherwise
Open Hardware: HackRF One

- Developed and produced by Michael Ossmann
- License: GPLv2 (Hard and software)
- Dual Core ARM Cortex M4 + M0
- 1 MHz – 6 GHz range
- 20 Msps maximum sample rate
- USB 2.0 port
Open Source

Firmware

- r0ketlib
 - Adapted code from previous project
 - Display, 10dables, fonts
- hackrf (firmware)
 - SDR support
 - Some initialization
 - CPLD flashing
- libopencm3
 - Hardware initialization & abstraction
- Portapack (archived version)
 - Basic embedded signal processing
- FatFS
 - Portable FAT implementation

Software

- GNURadio
 - Host based signal processing
- gr-osmosdr
 - GNURadio source/sink block
- libhackrf
 - Basic tools, debug functionality
- dfu-util
 - USB bootloader support
Sponsoring: Time and Quantity

- It took a lot of time to get the OK from some sponsors
- We initially communicated a goal of 3000 devices
- Got an estimate of 4500 visitors afterwards
 - Had to wait again for (much quicker) approval
Sponsoring: Design Changes

- Overall similar RF-Path to HackRF One
- Different mixer with external frequency generator to save cost
- Different RF-Switches
- Different LNAs
- Max 4 GHz design
Sponsoring: Design Changes

- Overall similar RF-Path to HackRF One
- Different mixer with external frequency generator to save cost
- Different RF-Switches
- Different LNAs
- Max 4 GHz design
Timeline

2014
Summer Idea

2015
January
Asking around

February
Actual work starts

March
1st prototype

June
24th
Finaly Layout

June
11th
Production start

August
3rd
Flashing

Camp day -1
Camp day 0
radio handout
Advice

- Start early, take risks early
 - SHA2016 team is already meeting
- Lead times of components and the PCB could have killed the project
- Had to resort to ultra fast shipping of prototypes to gain some days
EAGLE vs. KiCad

- HackRF One design is in KiCad
 - Most team members were familiar with EAGLE
- Made mistakes while copying the schematic...
- The ISP pin is missing a pull-up
 - May cause the radio to not boot
 - Apparently not an issue, but the pin is very touchy
Nerdkorea at Camp
Prototype 1

- EAGLE symbol of the CPU had some pins swapped
 - Among them: VCC and GND
- We had to drill out a via with a 0.4 mm hole to disconnect a ball of the BGA
- All other pins were accessible through the pin headers
“Prototype” 2

- Make or break
 - Just for verification
- Ground plane

Prototype 2 PCB (DPF Viewer)

Production PCB (gerbv)
Application: rfapp

- **scope**
 - Shows an RF waterfall
 - Selectable frequency
 - Selectable timescale
 - Bandwidth: 2 MHz
Application: rfapp

- FM Receiver / Transmitter
 - Wideband FM
 - Push to talk
 - Thanks to @hilse
Application: HackRF App

- Status display for different HackRF mode settings
- Choose HKRF-APP in the bootloader
Application: HackRF App

- Status display for different HackRF mode settings
- Choose HKRF-APP in the bootloader
Application: HackRF App

- Status display for different HackRF mode settings
- Choose HKRF-APP in the bootloader
l0ungel1cht

- Takes DMX data and transmits commands to other radios
- Using rflib from @hilse: Moves SDR processing to M0 core
Demo: Remote Controlled Power Socket
Possible Standalone Applications for the rad1o

- No WiFi jammers please :)
- RF replay device
- Self made home automation
- Passive indoor localization

- Simple “video” streaming
- USB filter
- USB debugging

- Very good general SDR introduction:
 http://greatscottgadgets.com/sdr
• Mailing list: rad1o@lists.muc.ccc.de
• GitHub: https://github.com/rad1o/
• Wiki: https://rad1o.badge.events.ccc.de
• twitter: @rad1obadge

Thanks to all people involved in the project

• https://media.ccc.de/v/camp2015-6884-the_rad1o
• https://media.ccc.de/v/dg56-Hands-on_Rad1o
• https://media.ccc.de/v/32c3-7153-rad1o