
PostgreSQL on VAX ! Or….

What I did for fun during my
summer vacation!

VAX?

Where to find a VAX?

simh - VAX emulator
The Computer History Simulation Project
http://simh.trailing-edge.com/

Installing NetBSD on a ka655x VAX 3800:
http://www.netbsd.org/ports/vax/emulator-howto.html

PDP-11 UNIX V5
PDP-11 UNIX V6
PDP-11 UNIX V7

Operating systems
that support VAX

Operating systems
PostgreSQL supports

VAX/VMS
VAX/Rdb

4.3BSD

Install NetBSD
Time passes….

24 hours later...

MicroVAX 3800
Relative Performance x VAX-11/780 (1 MIP) 3.8

Number of Processors 1

Max. Memory Support 64 MB

Max. Local Disk Capacity (formatted) MV 3800: 2.4 GB;
MV 3900: 9.7 GB

Max I/O Throughput 3.3 MB/s

Floating Point Accelerator Standard

Floating Point Data Types F, D, G, H

Cache Size 1 KB on chip
64 KB on board

Install pkgsrc
Time passes….

Run out of disk space… drives are limited to 2.4GB … create new drive
Time passes….

Ran out of inodes … create new file system
Time passes…

48 hours later….

Build perl, python, bison, ...
Time passes….

Ran out of space again… create 20G NFS volume from host machine and
mount it from guest machine ...

Time passes….

72 hours later...

Build Postgres!
Time passes….

48 hours later

Run regression tests...
Kernel panic (probably NetBSD PR#28379 http://gnats.netbsd.org/28379):

panic: usrptmap space leakage
cpu0: Begin traceback...
panic: usrptmap space leakage
Stack traceback :
 Process is executing in user space.
cpu0: End traceback...

Out of memory … initdb’s smallest numbers are still too large ...
Reduce max_backends and run tests with MAX_CONNECTIONS=2

It took 7h20m to run the regression tests

http://gnats.netbsd.org/28379

No IEEE Floating Point
Expected.

Postgres documents that users should expect the floating point semantics of
the architecture, so job done?

Not quite, the consequences are a bit surprising:

No IEEE Floating Point
On a modern architecture with IEEE floating point:
$ gcc -Wall exp.c -lm
$./a.out
exp(88.0297) = 1.70141e+38

On VAX:
simh$ gcc -Wall exp.c -lm
simh$./a.out
[4] Illegal instruction (core dumped) ./a.out

Postgres needs to catch SIGILL or override infnan() so it signals a floating point
error rather than crash.

Infinite loop in GROUPING SETS test
commit 44ed65a545970829322098e22d10947e6d545d9a
Author: Tom Lane <tgl@sss.pgh.pa.us>
Date: Sun Aug 23 13:02:13 2015 -0400

 Avoid use of float arithmetic in bipartite_match.c.

 Since the distances used in this algorithm are small integers (not more
 than the size of the U set, in fact), there is no good reason to use float
 arithmetic for them. Use short ints instead: they're smaller, faster, and
 require no special portability assumptions.

 Per testing by Greg Stark, which disclosed that the code got into an
 infinite loop on VAX for lack of IEEE-style float infinities. We don't
 really care all that much whether Postgres can run on a VAX anymore,
 but there seems sufficient reason to change this code anyway

regression=# select
pid,now()-query_start,now()-state_change,waiting,state,query from
pg_stat_activity where pid <> pg_backend_pid();
+------+-----------------+-----------------+---------+--------+--+
| pid | ?column? | ?column? | waiting | state | query |
+------+-----------------+-----------------+---------+--------+--+
| 9185 | 00:53:38.571552 | 00:53:38.571552 | f | active | select a, b, grouping(a,b), sum(v), count(*), max(v)#|
| | | | | | from gstest1 group by rollup (a,b); |
+------+-----------------+-----------------+---------+--------+--+

Planner FP overflows
commit aad663a0b4af785d0b245bbded27537f23932839
Author: Tom Lane <tgl@sss.pgh.pa.us>
Date: Sun Aug 23 15:15:47 2015 -0400

 Reduce number of bytes examined by convert_one_string_to_scalar().

 Previously, convert_one_string_to_scalar() would examine up to 20 bytes of the input string,
 producing a scalar conversion with theoretical precision far greater than is of any possible use
 considering the other limitations on the accuracy of the resulting selectivity estimate. (I
 think this choice might pre-date the caller-level logic that strips any common prefix of the
 strings; before that, there could have been value in scanning the strings far enough to use all
 the precision available in a double.)

 Aside from wasting cycles to little purpose, this choice meant that the "denom" variable could
 grow to as much as 256^21 = 3.74e50, which could overflow in some non-IEEE float arithmetics.
 While we don't really support any machines with non-IEEE arithmetic anymore, this still seems
 like quite an unnecessary platform dependency. Limit the scan to 12 bytes instead, thus
 limiting "denom" to 256^13 = 2.03e31, a value more likely to be computable everywhere.

 Per testing by Greg Stark, which showed overflow failures in our standard regression tests on VAX.

The Bad News
Goal was to add new build farm member building Postgres
regularly and testing it on VAX architecture (even if
emulated).

Sadly that hope is doomed. We would never pass the
regression tests without significantly weakening our testing.

Without a build farm member we can’t seriously say we
“support” VAX :(

The Good News
Nonetheless this exercise helped us learn more about our
own source tree and what dependencies it had grown.

It led to two small commits that significantly simplified code
and removed unnecessary overhead as well as the
unnecessary portability hazard.

