

Compute Support for Nouveau

Creating a LLVM to TGSI and a SPIR-V to
NV50 IR backend

Hans de Goede, Pierre Moreau

About Us

Hans de Goede
● Software engineer

for Red Hat's
graphics team

● Nouveau developer
since 2015

Pierre Moreau
● PhD Student in

Computer Graphics
at Lunds Tekniska
Högskola, Sweden

● Nouveau developer
since 2013

Summary

I. Recap of Mesa's Compute Stack

II.Converting SPIR-V to NV50 IR

III.Converting LLVM IR to TGSI

IV.Conclusion

Recap of Mesa's Compute Stack

OpenCL LLVM IR

SPIR-V

TGSI

NV50 IR GPU code

Mesa

Clover

Nouveau

clang

Hans' work

Pierre's work

Nouveau's TGSI converter

Nouveau's lowering
pass

Application

SPIR-V
binary

Presentation of NV50 IR

● Custom Intermediate Representation (IR)
used by Nouveau internally for all shaders
(and now kernels)

● Keeps track of Control Flow Graph and
variables' uses

● The Nouveau compiler performs multiple
optimisation passes on NV50 IR, before
lowering it to machine code

Presentation of SPIR-V

● Introduced by Khronos in 2015 as the IR
fed into Vulkan, for shaders and kernels

● Binary format, supports extensions
● Is in Static Single-Assignment form, and

might have gone through optimisation
passes

Presentation of SPIR-V (cont.)

Required capabilities and extensions

Memory model and entry points

Some debug information

Types

Constants

Functions

NV50 IR (and Mesa) Befriends
SPIR-V

● Uses KhronosGroup/{SPIRV-LLVM, SPIR}
from GitHub

● Integrate with clover: SPIR-V generation
● Integrate with Nouveau: advertise

compute and SPIR-V support
● Need to design new storage class for non-

vec4 elements, and of different sizes

SPIR-V → NV50 IR: Current
Status

What Works:

● Arithmetic and
comparison ops

● Branching without phi
nodes

● Some builtins

● Array/pointer indexing

● Vector support

● Casts (not all of them)

What Doesn't Work:
● Phi nodes
● Images
● Atomics
● Loops
● Swizzles
● Function calling (almost)
● Some builtins and ops

Presentation of TGSI

● Tungsten Graphics Shader Infrastructure
● Intermediate language for shaders used in

gallium (mesa), modelled after DX9 shader-ir
● Uses four component vector registers and

operations, following the SIMD design of
(DX9) GPUs at the time

● Somewhat cumbersome for current Nvidia
GPUs which are not SIMD.

LLVM Befriends TGSI
● Based on Francisco Jerez' TGSI llvm

backend work from 2013
● Several issues due to TGSI differences from

typical assembly syntax:
– Using a single vector component requires

adding swizzling postfixes
– Immediates need to be declared before the

program and then addressed as IMM[x] rather
then just writing the immediate value

– Used registers need to be declared beforehand

● libclc support for get_local_id() and friends

LLVM → TGSI: Current Status

● clang can now compile this:

● Into:
...

__kernel void test_kern(__global uint *vals, __global uint *buf)
{
 uint id = get_local_id(0);

 buf[32 * id] -= vals[id];
}

COMP

DCL SV[0], BLOCK_ID[0]

DCL SV[1], BLOCK_SIZE[0]

DCL SV[2], GRID_SIZE[0]

DCL SV[3], THREAD_ID[0]

DCL TEMP[0]

DCL TEMP[1]

...

DCL TEMP[31]

IMM UINT32 { 7, 0, 0, 0 }

IMM UINT32 { 4, 0, 0, 0 }

IMM UINT32 { 2, 0, 0, 0 }

IMM UINT32 { 0, 0, 0, 0 }

BGNSUB

 SHL TEMP[1].x, SV[3].xxxx, IMM[0].xxxx

 LOAD TEMP[1].y, RINPUT.xxxx, IMM[1]

 UADD TEMP[1].x, TEMP[1].yyyy, TEMP[1].xxxx

 SHL TEMP[1].y, SV[3].xxxx, IMM[2].xxxx

 LOAD TEMP[1].z, RINPUT.xxxx, IMM[3]

 UADD TEMP[1].y, TEMP[1].zzzz, TEMP[1].yyyy

 LOAD TEMP[1].y, RGLOBAL.xxxx, TEMP[1].yyyy

 INEG TEMP[1].y, TEMP[1].yyyy

 LOAD TEMP[1].z, RGLOBAL.xxxx, TEMP[1].xxxx

 UADD TEMP[1].y, TEMP[1].yyyy, TEMP[1].zzzz

 STORE RGLOBAL.x, TEMP[1].xxxx, TEMP[1].yyyy

 RET

ENDSUB

LLVM → TGSI: What is missing?
● TGSI backend:

– Support for doubles, vectors
– Control flow (if / for / while) support
– Function call support
– Support for multi-dimensional input / output data

● clover:
– Integration of clang/llvm TGSI support into clover

● libclc:
– Currently only supports get_local_id
– everything else is missing

Nouveau and OpenCL: What Is
missing?

● Image support (being worked on by Ilia
Mirkin and Samuel Pitoiset)

● Atomics support (being worked on by Ilia
Mirkin)

● Memory barriers / fences
● Support more GPU models

Questions ?

● Git:
– SPIR-V:

https://phabricator.pmoreau.org/diffusion/MESA

– LLVM → TGSI:

http://cgit.freedesktop.org/~jwrdegoede/llvm

http://cgit.freedesktop.org/~jwrdegoede/clang

http://cgit.freedesktop.org/~jwrdegoede/libclc

● Contact:
– Hans de Goede <hdegoede@redhat.com>
– Pierre Moreau <pierre.morrow@free.fr>

