
More on gdb for MySQL DBAs
or

Using gdb to study MySQL internals and as a last resort

Valerii Kravchuk, MySQL Support Engineer
vkravchuk@gmail.com

www.percona.com

Who am I?

Valerii (aka Valeriy) Kravchuk:
● MySQL Support Engineer in MySQL AB, Sun and Oracle, 2005 - 2012

○ Bugs Verification Team all this time
○ Support issues related to bugs, crashes, InnoDB, performance...
○ Trainings (mostly informal) for new team members
○ All kinds of decision making committees…

● Principal Support Engineer in Percona, 2012 - 2016
○ Did more or less the same as before, but better (I hope)...
○ Plus I tried to speak and write about MySQL in publi

● Independent since January 27, 2016
● http://mysqlentomologist.blogspot.com - my blog about MySQL (mostly

bugs)
● https://www.facebook.com/valerii.kravchuk - my Facebook page, a lot about

MySQL (mostly bugs…)
● http://bugs.mysql.com - my personal playground. 28 bugs reported since

February, 2015

http://mysqlentomologist.blogspot.com
https://www.facebook.com/valerii.kravchuk
http://bugs.mysql.com

www.percona.com

What is this session about?

● Some historical remarks and URLs to known use
cases/blog posts about gdb and MySQL troubleshooting

● Multi-threaded executables and gdb (threads, frames)
● Basic gdb commands and “tricks”
● Few words on pt-pmp use
● Important MySQL data structures to explore

(mostly THD)
● Using gdb to study InnoDB and metadata locks
● A couple of real life use cases, working with core dump

and alive mysqld
● Discussion

www.percona.com

Usually gdb is used by developers to study core
dumps...

● Mostly like these:
gdb /path/to/mysqld /path/to/coredump

● Bug #76432 - “handle_fatal_signal (sig=11) in
__strlen_sse2_pminub on CHANGE MASTER”

● Bug #69898 - “change_master() invokes
ha_innobase::truncate() in a DML transaction” - a lot
of useful gdb-related reading inside.
See also related Bug #69825 and Bug #73155 (still
“Verified”)

https://bugs.mysql.com/bug.php?id=76432
https://bugs.mysql.com/bug.php?id=69898
http://bugs.mysql.com/bug.php?id=69825
https://bugs.mysql.com/bug.php?id=73155

www.percona.com

...or (surprise!) to debug their code

● Running “under gdb”:
gdb --args bin/mysqlcheck -u root -p -S/tmp/mysql.sock
--all-databases --optimize
(gdb) thread apply all bt

● Attaching gdb to the process already running:
gdb -p `pidof mysqld`

● Some examples:
○ Percona Server Bug #1483251 - “savepoints and replication”. Check

how Vlad Lesin uses backtrace to understand the reason of the bug
○ Percona Server Bug #1426345 - “Prepared statements in stored

procedures crash query response time plugin”. Check how Nickolay
Ihalainen pinpoint the root cause of the bug by comparing values of
various variables in gdb

https://bugs.launchpad.net/percona-server/+bug/1483251
https://bugs.launchpad.net/percona-server/+bug/1426345

www.percona.com

But production DBAs also may benefit from gdb!

● First of all, gdb allows to inspect the values of variables
in the mysqld process memory, and thus you can check
some details about user threads and statements
executed that may not be easily available via SQL
(missing feature, can’t connect, hangs, bug)

● Also gdb allows to change the values of variables, both
global and session ones (missing feature, read only
ones) directly or indirectly (by calling functions in the
code)

● Finally, attaching gdb allows to get a backtrace for
further study of the root cause of the problem

www.percona.com

Domas is famous for these tricks...

● http://dom.as/2009/02/15/poor-mans-contention-profiling/ -
this is what ended up as http://poormansprofiler.org/ and
pt-pmp

● http://dom.as/2009/07/30/evil-replication-management/ -
mysql> system gdb -p $(pidof mysqld) -ex "set
opt_log_slave_updates=1" -batch

● http://dom.as/2010/01/02/read-ahead/ -
gdb -ex "set srv_startup_is_before_trx_rollback_phase=1"
-batch -p $(pidof mysqld)

● http://dom.as/2009/12/29/when-bad-things-happen/

http://dom.as/2009/02/15/poor-mans-contention-profiling/
http://poormansprofiler.org/
http://dom.as/2009/07/30/evil-replication-management/
http://dom.as/2009/07/30/evil-replication-management/
http://dom.as/2010/01/02/read-ahead/
http://dom.as/2010/01/02/read-ahead/
http://dom.as/2009/12/29/when-bad-things-happen/
http://dom.as/2009/12/29/when-bad-things-happen/

www.percona.com

More examples of gdb use for MySQL DBAs

● Remember the names:
Domas Mituzas, Shane Bester, Roel Van De Paar, Mark Callaghan,
Aurimas Mikalauskas, Zhai Weixiang, ...

● http://www.percona.com/blog/2012/09/09/obtain-last-executed-statement-from-
optimized-core-dump/

● http://www.percona.com/blog/2013/11/11/how-to-extract-all-running-queries-
including-the-last-executed-statement-from-a-core-file/

● http://mysqlbugs.blogspot.com.au/2012/09/how-to-obtain-all-executing-queries.
html

● http://www.percona.com/blog/2010/03/23/too-many-connections-no-problem/

http://www.percona.com/blog/2012/09/09/obtain-last-executed-statement-from-optimized-core-dump/
http://www.percona.com/blog/2012/09/09/obtain-last-executed-statement-from-optimized-core-dump/
http://www.percona.com/blog/2012/09/09/obtain-last-executed-statement-from-optimized-core-dump/
http://www.percona.com/blog/2013/11/11/how-to-extract-all-running-queries-including-the-last-executed-statement-from-a-core-file/
http://www.percona.com/blog/2013/11/11/how-to-extract-all-running-queries-including-the-last-executed-statement-from-a-core-file/
http://www.percona.com/blog/2013/11/11/how-to-extract-all-running-queries-including-the-last-executed-statement-from-a-core-file/
http://mysqlbugs.blogspot.com.au/2012/09/how-to-obtain-all-executing-queries.html
http://mysqlbugs.blogspot.com.au/2012/09/how-to-obtain-all-executing-queries.html
http://mysqlbugs.blogspot.com.au/2012/09/how-to-obtain-all-executing-queries.html
http://www.percona.com/blog/2010/03/23/too-many-connections-no-problem/
http://www.percona.com/blog/2010/03/23/too-many-connections-no-problem/

www.percona.com

What MySQL DBA can do with gdb
● Check stack traces (and variables), per thread:

thread apply all bt [full]

● Print variables, up to complex one:
thread 1
print do_command::thd->query_string.string.str

● Set new values for variables (global and per thread, even those formally
read-only in MySQL while it’s running):
set max_connections=5000
set opt_log_slave_updates=1

● Call functions (that may do complex changes):
call rpl_filter->add_do_db(strdup("hehehe"))

● Set breakpoints and watchpoints
● Work interactively or use gdb as a command line utility (-batch)
● Use macros, Python scripting, more…
● All these may not work, fail, hang, crash, produce obscure errors…
● You have to read and understand the source code

www.percona.com

pt-pmp (Poor Man’s Profiler)
● http://www.percona.com/doc/percona-toolkit/2.2/pt-pmp.html

pt-pmp [-i 1] [-s 0] [-b mysqld] [-p pidofmysqld] [-l 0] [-k file] [--version]

● It is based on original idea by Domas (http://poormansprofiler.org/) with
some more bash/awk on top applied

● One of the recent examples how it is used (semi-sync replication
performance): http://bugs.mysql.com/bug.php?id=75570

● When mysqld hangs or is slow, you can get some insight quickly: http://bugs.
mysql.com/bug.php?id=75028 (HandlerSocket “hangs” on shutdown)

● When there are stalls, use pt-pmp to find out why (or what threads mostly
do at the moment): http://bugs.mysql.com/bug.php?id=69810

● pt-pmp surely slows server down :) Hint (partial workaround is in the bug):
https://bugs.launchpad.net/percona-toolkit/+bug/1320168

http://www.percona.com/doc/percona-toolkit/2.2/pt-pmp.html
http://www.percona.com/doc/percona-toolkit/2.2/pt-pmp.html
http://bugs.mysql.com/bug.php?id=75570
http://bugs.mysql.com/bug.php?id=75028
http://bugs.mysql.com/bug.php?id=75028
http://bugs.mysql.com/bug.php?id=75028
http://bugs.mysql.com/bug.php?id=69810
https://bugs.launchpad.net/percona-toolkit/+bug/1320168
https://bugs.launchpad.net/percona-toolkit/+bug/1320168

www.percona.com

Multi-threaded mysqld process and gdb
● process/thread/frame concepts:

(gdb) thread 2
[Switching to thread 2 (Thread 0x7fe771550700 (LWP 2544))]

#0 0x0000000000605774 in Item_func_numhybrid::val_int (
this=<value optimized out>)
at /home/openxs/bzr2/percona-5.6/sql/item_func.cc:1013

1013 }
(gdb) bt
...
#12 0x00000000006f8a45 in dispatch_command (command=COM_QUERY,

thd=0x7fe760f94000, packet=0x7fe77154fac0 "", packet_length=0)
at /home/openxs/bzr2/percona-5.6/sql/sql_parse.cc:1434

...
(gdb) frame 12
#12 0x00000000006f8a45 in dispatch_command (command=COM_QUERY,

thd=0x7fe760f94000, packet=0x7fe77154fac0 "", packet_length=0)
at /home/openxs/bzr2/percona-5.6/sql/sql_parse.cc:1434

warning: Source file is more recent than executable.
1434 mysql_parse(thd, thd->query(), thd->query_length(), &parser_state);
(gdb) p thd->query_string.string.str
$2 = 0x7fe75301d010 "select benchmark(5", '0' <repeats 13 times>, ", 2*2)"

● https://sourceware.org/gdb/onlinedocs/gdb/Variables.html

https://sourceware.org/gdb/onlinedocs/gdb/Variables.html
https://sourceware.org/gdb/onlinedocs/gdb/Variables.html

www.percona.com

THD structure
grep -rn THD sql/sql_class.h

class THD :public MDL_context_owner,
 public Statement,
 public Open_tables_state
HASH user_vars; // hash for user vars
struct system_variables variables; // Changeable local
vars
struct system_status_var status_var;// Per thread stat
vars
struct system_status_var *initial_status_var; /* used by
show status */
Security_context main_security_ctx;
...
CSET_STRING query_string; // inherited from Statement…
...

www.percona.com

THD structure (continued)

(gdb) p thd->main_security_ctx->user

$7 = 0x7fe753019058 "root"

(gdb) p thd->main_security_ctx->host

$8 = {Ptr = 0xc16759 "localhost", str_length = 9,
Alloced_length = 0,

 alloced = false, str_charset = 0x1393de0}

www.percona.com

Real life case: checking core dump

gdb -ex 'set pagination 0'\
…\
 -ex 'thread apply all bt full'\
/path/to/mysqld /var/tmp/core.<pid> | tee core.<pid>.bt

● Make sure you know how to get core when mysqld
crashes:

http://www.percona.com/blog/2011/08/26/getting-mysql-core-file-on-linux/

● Let’s check one example, we need crashing bug for this:

https://bugs.launchpad.net/percona-server/+bug/1384658

http://www.percona.com/blog/2011/08/26/getting-mysql-core-file-on-linux/
http://www.percona.com/blog/2011/08/26/getting-mysql-core-file-on-linux/
https://bugs.launchpad.net/percona-server/+bug/1384658
https://bugs.launchpad.net/percona-server/+bug/1384658

www.percona.com

Real life case: attaching to alive mysqld

This is how it goes:
[root@centos openxs]# mysql -uroot -e "show variables like
'innodb_autoinc_lock_mode'"

+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| innodb_autoinc_lock_mode | 0 |
+--------------------------+-------+
[root@centos openxs]# mysql -uroot -e "set global

innodb_autoinc_lock_mode=1"
ERROR 1238 (HY000) at line 1: Variable 'innodb_autoinc_lock_mode' is a
read only variable

[root@centos openxs]# gdb -ex "set innobase_autoinc_lock_mode=1" -batch -p
`pidof mysqld`
…
[Thread debugging using libthread_db enabled]

0x00007ff31d6830d3 in poll () from /lib64/libc.so.6
… check the variable value again now

[root@centos openxs]# ps aux | grep mysqld
[root@centos openxs]# kill -SIGCONT `pidof mysqld`

www.percona.com

How to study InnoDB locks with gdb

● Read the code (or blogs, or backtraces) to find out what
functions are called when InnoDB locks are requested:

○ lock_table - table level locks
○ lock_rec_lock - row level locks

● Make sure there is debug info for mysqld binary you use
● Attach gdb to running mysqld process in test env:

[root@centos ~]# gdb -p `pidof mysqld`
...
(gdb) b lock_table
...
(gdb) b lock_rec_lock
...
(gdb) c

● Run SQL you want to study and check sequence of calls,
backtraces, variables...

www.percona.com

How to study metadata locks with gdb

● Read the code (or blogs, or backtraces) to find out what
functions are called when metadata locks are requested:

○ MDL_request::init - metadata lock request
○ MDL_context::aquire_lock - attempt to aquire lock

● Make sure there is debug info for mysqld binary you use
● Attach gdb to running mysqld process in test env:

[root@centos ~]# gdb -p `pidof mysqld`
...
(gdb) b MDL_request::init
...
(gdb) c

● Run SQL you want to study and check sequence of calls,
backtraces, variables...

www.percona.com

Results of using gdb to study MySQL internals

● Exploring metadata locks with gdb:
○ http://mysqlentomologist.blogspot.com/2016/01/exploring-metadata-locks-with-gdb-first.html
○ http://mysqlentomologist.blogspot.com/2016/01/exploring-metadata-locks-with-gdb.html
○ http://mysqlentomologist.blogspot.com/2016/01/exploring-metadata-locks-with-gdb-how.html

● Exploring InnoDB locks with gdb:
○ http://mysqlentomologist.blogspot.com/2015/03/using-gdb-to-understand-what-locks-and_31.html
○ http://mysqlentomologist.blogspot.com/2015/04/using-gdb-to-understand-what-locks-and.html
○ http://www.slideshare.net/valeriikravchuk1/understanding-innodb-locks-and-deadlocks

● Bug reports and documentation requests to make MySQL
and its manual better:

○ Bug #79665 - Manual does NOT explain locks set by INSERT ... ON DUPLICATE KEY UPDATE
properly

○ Bug #77390 - Manual does not explain a "deadlock" case of online ALTER
○ Bug #76588 - Metadata lock is NOT released when SELECT completes in case of autocommit=0
○ Bug #76563 - Manual does NOT explain when exactly AUTO-INC lock is set for "bulk inserts"
○ Bug #76533 - AUTO_INC lock seems to be NOT set for INSERT INTO t(val) SELECT val FROM t

● Immediate DBA problems solved without restart etc

http://mysqlentomologist.blogspot.com/2016/01/exploring-metadata-locks-with-gdb-first.html
http://mysqlentomologist.blogspot.com/2016/01/exploring-metadata-locks-with-gdb-first.html
http://mysqlentomologist.blogspot.com/2016/01/exploring-metadata-locks-with-gdb.html
http://mysqlentomologist.blogspot.com/2016/01/exploring-metadata-locks-with-gdb.html
http://mysqlentomologist.blogspot.com/2016/01/exploring-metadata-locks-with-gdb-how.html
http://mysqlentomologist.blogspot.com/2016/01/exploring-metadata-locks-with-gdb-how.html
http://mysqlentomologist.blogspot.com/2015/03/using-gdb-to-understand-what-locks-and_31.html
http://mysqlentomologist.blogspot.com/2015/03/using-gdb-to-understand-what-locks-and_31.html
http://mysqlentomologist.blogspot.com/2015/04/using-gdb-to-understand-what-locks-and.html
http://mysqlentomologist.blogspot.com/2015/04/using-gdb-to-understand-what-locks-and.html
http://www.slideshare.net/valeriikravchuk1/understanding-innodb-locks-and-deadlocks
http://www.slideshare.net/valeriikravchuk1/understanding-innodb-locks-and-deadlocks
http://bugs.mysql.com/bug.php?id=79665
http://bugs.mysql.com/bug.php?id=77390
http://bugs.mysql.com/bug.php?id=77390
http://bugs.mysql.com/bug.php?id=76588
http://bugs.mysql.com/bug.php?id=76588
http://bugs.mysql.com/bug.php?id=76563
http://bugs.mysql.com/bug.php?id=76563
http://bugs.mysql.com/bug.php?id=76533
http://bugs.mysql.com/bug.php?id=76533

www.percona.com

Is gdb an ultimate answer for MySQL DBA?

No, it’s like a temporary, one time solution or last resort.

Instead you may (or should, whenever possible):

● Use real profilers at OS level (like prof or oprofile)
● Use troubleshooting tools at MySQL level (like P_S)
● Implement missing feature (like setting some variable

dynamically) or request it from developers
● Consider upgrade to version or fork that already has a

feature you miss
● Plan your work and do maintenance properly
● Read the manual and source code

www.percona.com

Thank you!
Questions and Answers?

Please, report bugs at:

http://bugs.mysql.com

Use “Affects Me” button!

http://bugs.mysql.com
http://bugs.mysql.com

