
Building SoCs with Migen and MiSoC

Sébastien Bourdeauducq

M-Labs Ltd, Hong Kong – http://m-labs.hk

January 29, 2016

David Iliff, CC-BY-SA

http://m-labs.hk

M-Labs Limited
• Founded after Milkymist, similar to a small research institute
• Engineering contracts for physics are fun:

• Purpose
• Challenging problems, multidisciplinary, advanced technology
• Often open source friendly

• Incorporated in Hong Kong in 2013, now 4 full-time staff
• Our HK office/lab contains many interesting devices (vacuum

systems, cryocooler, TIG welder, ...)

Picture by Chong Kong

History of Migen

• Built Milkymist SoC in Verilog (2007-2011)
• Dataflow graphics pipeline, hardcoded
• Wanted a language for hardware dataflow
• Tried to implement on top of MyHDL, failed (2011)
• Developed Migen FHDL, based on metaprogramming
• Started implementing again on top of Migen FHDL
• Found out it was excellent for SoC, started MiSoC (2012)
• Migen dataflow is not used much these days

Basic idea: metaprogramming

• Use high level language (Python) to build code in low level
language (HDL).

• Migen gives you Python objects to assemble to build your
design.

• Contains hacks for syntactic sugar.
• Those objects assembled by your Python program are

converted to Verilog so that third-party tools can synthesize
the design.

A simple design

a = Signal()
b = Signal()
x = Signal()
y = Signal()
module.comb += x.eq(a | b)
module.comb += _Assign(y, _Operator("+", [a, b]))
verilog.convert(module)

A simple design

module top();

reg a = 1'd0;
reg b = 1'd0;
wire x;
wire y;

assign x = (a | b);
assign y = (a | b);

endmodule

Bus interfaces are free

class MySimpleBus:
def __init__(self):

self.stb = Signal()
self.ack = Signal()
self.we = Signal()
self.adr = Signal(16)
self.dat_w = Signal(16)
self.dat_r = Signal(16)

bus = MySimpleBus()
module.comb += bus.stb.eq(...)

Synchronous logic

a = Signal()
b = Signal()
x = Signal()
comb changed to sync
module.sync += x.eq(a | b)
verilog.convert(module)

Synchronous logic

module top(input sys_clk, input sys_rst);

reg a = 1'd0;
reg b = 1'd0;
reg x = 1'd0;

always @(posedge sys_clk) begin
if (sys_rst) begin
x <= 1'd0;

end else begin
x <= (a | b);

end
end

endmodule

Finite state machines (FSMs)

fsm = FSM()
fsm.act("IDLE",

foo.eq(a & b),
If(start_munging, NextState("MUNGING"))

)
fsm.act("MUNGING",

foo.eq(c),
If(back, NextState("IDLE"))

)

FSMs: automated register loading

fsm = FSM()
fsm.act("IDLE",

foo.eq(a & b),
If(start_munging, NextState("MUNGING"))

)
fsm.act("MUNGING",

foo.eq(c),
If(load_one, NextValue(a, 1)),
If(load_two, NextValue(a, 2)),
If(inc, NextValue(b, b+1)),
If(back, NextState("IDLE"))

)

FSMs: behind the scenes

• The FSM module is not magical
• It is implemented using regular Python and Migen FHDL
• Memorizes all user actions (act calls), then finalization step

issues FHDL calls. In that step it:
1 looks at all the states the user has referenced, encodes them,

generates state register and next state signal
2 replaces NextState with assignments to the next state signal
3 looks at all uses of NextValue, generate load logic, replaces

NextValue with assignments to load enable signals
4 generates combinatorial case statement on state with logic

from the act calls (after replacements)

Read the source: migen/genlib/fsm.py

Bus decoding/arbitration

cpu = LM32(...)
dma_engine = MungeAccelerator(...)
sdram = SDRAMController(...)
bus = BusCrossbar(

initiators
[cpu.ibus, cpu.dbus, dma_engine.initiator],
targets
[(0x10000000, sdram.bus),
(0xc0000000, dma_engine.control)]

)

Again no magic - BusCrossbar is regular Python/FHDL

Memory-mapped I/O

class MyCoolPeripheral(AutoCSR, Module):
def __init__(self):

self.enable = CSRStorage()
self.fifo_level = CSRStatus(32)
...
If(self.enable.storage, ...)
...
self.comb += self.fifo_level.status.eq(...)

CSR* get automatic address assignment, generation of bus
interface logic, generation of C header file.

Implementation

from migen import *
from migen.build.platforms import m1

plat = m1.Platform()
led = plat.request("user_led")

m = Module()
counter = Signal(26)
m.comb += led.eq(counter[25])
m.sync += counter.eq(counter + 1)

plat.build(m)

Runs synthesis+PAR (ISE/Quartus/Lattice1, Linux/Windows) and
generates bitstream file. You may use e.g. OpenOCD for loading.

1There is partial support for Yosys, but no one is testing it.

Simulation: Python generators

def foo():
for i in range(10):

yield 10*i
x = foo()
print(next(x)) # 0
print(next(x)) # 10
print(next(x)) # 20
print(next(x)) # 30
...

Concurrency with generators

def foo(n):
for i in range(10):

print(n*i)
yield

x = foo(100)
y = foo(1000)
next(x) # 0
next(y) # 0
next(x) # 100
next(y) # 1000
next(x) # 200
next(y) # 2000

Simulation
Yield statement used to synchronize generators to the clock tick
def munge1(dut):

...manipulate signals in cycle 0...
yield
...manipulate signals in cycle 1...
yield
...manipulate signals in cycle 2...

def munge2(dut):
...manipulate signals in cycle 0...
yield
...manipulate signals in cycle 1...

dut = DUT()
run_simulation(dut, {munge1(dut), munge2(dut)})

Maintaining determinism

• The result of a simulation must not depend on the order that
the simulator chooses to restart the generators

• Semantics of signal transactions provide this:
• reads happen before the clock tick
• writes happen after the clock tick

• This is similar to the semantics of the non-blocking
assignment (a <= b) in Verilog

• This is also why careless use of the blocking assignment
(a = b) causes obscure simulation bugs

• Xilinx application notes are brimming with such bugs
• VHDL users: non-blocking assignment = assignment to a

signal, blocking assignment = assignment to a variable.
Restricted scope of variables prevents those bugs.

Use of OOP

class MySimpleBus:
...
def read(self, address):

...
yield
...

def write(self, address, data):
...
yield
...

def my_test(dut):
yield from dut.bus.write(0x02, 0x1234)
x = yield from dut.bus.read(0x04)
assert x == 0x5678

MiSoC

• Provides high level classes for bus interconnect and MMIO:
• Wishbone
• CSR (as above)
• streaming (ex-dataflow) interfaces

• Provides many cores:
• Processors (wrapped Verilog): LM32, mor1kx (a better

OpenRISC)
• SDRAM controllers and PHYs (SDR, DDR1-3, fastest open

source DDR3 controller @64Gbps)
• UART, timer, SPI, 10/100/1000 Ethernet
• VGA/DVI/HDMI framebuffer, DVI/HDMI sampler

MiSoC

• Provides bare-metal software (bootloader, low-level libraries)
for your SoC.

• Provides SoC integration template classes.
• Provides basic and extensible SoC ports to FPGA boards.
• If those do not fit you, you can import the cores only and

integrate yourself.

Installing Migen/MiSoC

• Known to run on Linux and Windows
• Requires Python 3.3+
• Migen and MiSoC are regular Python packages (setuptools)
• We also provide Anaconda packages
• C compiler for SoC (GCC or Clang) must be installed

separately

After Migen/MiSoC are installed

python3 -m misoc.targets.kc705
[--cpu-type lm32/or1k]

• Creates misoc_basesoc_kc705 folder in current directory
• Builds software and bitstream there
• All compilation happens out-of-tree in that folder
• Concurrent builds supported

Extending a base SoC class (1/2)

from migen import *
from misoc.targets import BaseSoC
from misoc.cores import gpio

class MySoC(BaseSoC):
csr_map = {

"my_gpio": 13,
}
csr_map.update(BaseSoC.csr_map)
def __init__(self, *args, **kwargs):

BaseSoC.__init__(self, *args, **kwargs)
self.submodules.my_gpio = gpio.GPIOOut(Cat(

self.platform.request("user_led", 0),
self.platform.request("user_led", 1)))

Extending a base SoC class (2/2)

from misoc.integration.builder import *

if __name__ == "__main__":
Builder(MySoC()).build()

You may want to use argparse to reinstate support for CPU
switching, toolchain options, etc.

LTE base station
• PCIe x1 generic SDR board (Artix7 with AD9361: 70MHz to

6GHz)
• Almost 100% Migen/MiSoC code (the only exception is the

PCIe transceiver wrapper)
• Designed to be coupled together for MIMO 4x4
• With software LTE stack: allows affordable LTE BaseStation

(10x cheaper than traditionnal solutions)
• > 50 boards already produced.

LTE base station

A few benefits of using Migen/MiSoC:
• Increased productivity compared with VHDL/Verilog.
• Developing a PCIe core would have been too expensive with

traditional solutions, it has been done as part of this project.
• C header files that describes the hardware

(registers/flags/interrupts) automatically generated.
• Kintex-7 KC705 prototyping board and Artix final board share

most of the code.

SATA 1.5/3/6G core

• Connect hard drives to FPGAs, 6Gbps per drive.
• Used in research project at University of Hong Kong.
• Kintex-7 FPGA (KC705).
• All Migen, including transceiver block instantiation.

HDD picture by Evan-Amos, CC BY-SA 3.0

HDMI2USB project

• HDMI2USB: Open video capture hardware + firmware
• Created by the TimVideos project to enable Enable every user

group and conference to record and livestream
• Based around making hardware problems, software problems

using FPGAs.
• Appears as a UVC webcam and CDC ACM serial port,

allowing capture and control.

HDMI2USB project

Conversion from VHDL/Verilog Firmware to Migen/MiSoC

Original firmware was hand coded mix of VHDL and Verilog.
• Had questionable license as used Xilinx Coregen for parts.
• Slow progress, took 2 years of development.
• Poor testing.

Conversion from VHDL/Verilog Firmware to Migen/MiSoC

Decided to attempt a rewrite based on the Migen+MiSoC
• Milkymist/Mixxeo had the similar Spartan 6 FPGA and

support for most things needed - DDR, DVI/HDMI
• Funded Enjoy Digital to do the rewrite.
• Took about 4 weeks to re-implement everything apart from

MJPEG core.

Conversion from VHDL/Verilog Firmware to Migen/MiSoC
New Migen+MiSoC firmware was much easier to use!

• Unambigious, full FOSS licensing!
• VHDL/Verilog are very hard to use, Python is significantly

faster to develop in. Softcore approach means much of code is
C now.

• Already significantly more functionality then original firmware
(Ethernet, Buffering, Multi-board support).

Numato Opsis hardware

• Firmware was original developed on a commercial
development board.

• Created our own hardware, the Numato Opsis.
• Created the hardware design in KiCad - hardware isn’t open if

you can’t improve it.
• Our own hardware meant we could add new features such as

DisplayPort!
• Successfully crowdfunded through CrowdSupply.

Numato Opsis hardware

ARTIQ

• ARTIQ is the Advanced Real-Time Infrastructure for
Quantum physics.

• An integrated software/gateware/hardware system that
controls many aspects of atomic physics experiments.

• Developed with the NIST Ion Storage Group (atomic clocks,
quantum computing, quantum simulations)

• Managing/scheduling experiments, driving distributed devices,
displaying/archiving results.

• Like in high-energy physics, timing is important.

ARTIQ

ARTIQ
ARTIQ System Overview

Core_Device
FPGA

(e.g.	 KC705)

Master
*	 scheduler
*	 compiler
*	 results	 (HDF5)

Client
*	 GUI
*	 command-‐line

Logging	
Database
(InfluxDB)

Controller

Novatech
409B (DDSs)

Thorlabs
TDC &	 TPZ

LabBrick RF
attenuator

PDQ	 DACS
v.2

NI	 6733	 DACs

Peripherals:

fast	 synchronization

(PCI/PXI)

(USB)

(USB)

(USB)

(USB)

DDS	 AD9858

DDS	 AD9914TTL In/Out

git repository

Windows/Linux	 PC(s) Hardware

(1
	 G
b	
Et
he
rn
et
)

M-Labs
Ion	 Storage

ARTIQ

Core language

at_mu(ttl_in.timestamp_mu()) # wait for input trigger
delay(1.5*us)
first pulse precisely 1.5us after trigger
for i in range(3):

pulses as written, no delays from CPU/loop
ttl_out.pulse(17*ns)
delay(32*ns)

• Compromise between timing control and expressivity.
• We have developed a subset of Python with timing additions.

Implementation of the core language

• For low latency (microsecond): control loops implemented in
CPU tightly coupled to IO

• For timing precision: IO connected to TDC/DTC system
(“RTIO core”)

• TTL IO uses SERDES and has 1ns resolution
• Other devices (e.g. DDS) can be connected at output of

TDC/DTC with typ. 8ns resolution
• Python subset is processed by custom compiler (LLVM-based)

and loaded dynamically into the device

Quantum Information Processor

Wineland et al., J. Res. NIST 103 259-328 (1998); Kielpinski et al., Nature 417 709 (2002)

Smart hardware to drive electrodes (“PDQ”)

17.8 cm

AD9726 DAC

AD8250 Amplifier
XC3S500E PQ208

USB Connector

FT245RL

Board-to-board Interconnect

R. Bowler et al., Rev. Sci. Instrum. 84, 033108 (2013)

Spline interpolation in FPGA (“PDQ”)

R. Bowler et al., Rev. Sci. Instrum. 84, 033108 (2013);

R. Jördens, http://dx.doi.org/10.5281/zenodo.11567

http://dx.doi.org/10.5281/zenodo.11567

Migen/MiSoC advantages
• Automation, more productivity
• Portable SoC platform
• Factoring and reuse of code, e.g.

• OOP to decouple generic SERDES-TDC logic from
platform-dependent code

• generic SoC base classes for ARTIQ core devices
• Physicists love their legacy hardware

• We ended up supporting 4 different core devices
• Good management of different types of RTIO devices
• Lightweight

Conclusions

• Migen/MiSoC is a powerful solution to design, simulate and
implement gateware

• Used successfully in several products
• Permissive open source licensing (BSD)
• A few words of warning:

• Scarce documentation or tutorials (RTFS)
• Some corner cases are not well handled (e.g. different

directions in IO signal slice, slicing a slice)
• No “stable” release yet (Git only), though this will change soon

Links

• Migen/MiSoC: http://m-labs.hk/gateware.html
• PCIe core:

https://github.com/enjoy-digital/litepcie
• SATA 6G core:

https://github.com/enjoy-digital/litesata
• HDMI2USB: https://hdmi2usb.tv
• PDQ: https://github.com/nist-ionstorage/pdq2
• ARTIQ: http://m-labs.hk/artiq

http://m-labs.hk/gateware.html
https://github.com/enjoy-digital/litepcie
https://github.com/enjoy-digital/litesata
https://hdmi2usb.tv
https://github.com/nist-ionstorage/pdq2
http://m-labs.hk/artiq

