

 the murgiahack

 experiment

Gianluca Guida
<glguida@gmail.com>

Bruxelles, 30 January 2016

mailto:glguida@gmail.com

mh / introduction

MH is a microkernel and a set of libraries

 early stage

 BSD license

portable but not ported

Original (and still valid) goals:

management of privileged system resources

basic HW platform management

base for experiments with hardware and software

mh / base for experiments

A system for quick experimenting should be easy to
tinker and think with.

Should be:

● Flexible. Entities in the system should be able to be
used as building blocks to build complex systems –
e.g., pipes in UNIX

● Sensible and clear entities. Simple objects with
simple interactions help to reason with the system –
e.g., pipes vs grant tables

● Practical. The system should not be suffocated by
excess of ideology in the actual implementation –
we are engineers.

mh / microcomputer I

Meet the microcomputer:

mh / microcomputer II

● Its flexibility has allowed the microcomputer to
evolve into really complex current hardware.

● When you do not look at the details, the
abstractions are clear and sensible:

CPU, bus, memory, I/O device

Its ease to experiment with it is probably the
reason why many of us in this room – the oldest of
us? – started programming.

mh / the questions

Could we use these abstractions to gain software
flexibility while keeping the system practical and
clear?

Would such a system be actually useful?

mh / not new I

OS kernels whose interface is similar and closer to the
hardware aren't new.

– exokernels do it to safely multiplex the hardware (no
abstraction paradigm)

– hypervisors expose either an almost-identical or identical to
hardware interface to provide virtual machines
(paravirtualization or full virtualization)

Both of these interfaces are inherently non-portable.

– exokernels do not want to lie to the user

– hypervisors are built to avoiding emulation and to use native
architecture as much as possible for efficiency and
performance

mh / not new II

● Another operating system whose interface is inspired by
hardware: early UNIX
– UNIX in essence exposes a terminal, a disk and interrupts

(signals) to every process (which are CPUs)

– There are other concepts to this hardware-centric view: fork(),
pids, uids, gids. These help create a collaborative system
where resource can be protected and shared at the same time

What happens if we take this interpretation of the UNIX
approach and we lower the exposed hardware to the level
of CPU, bus, I/O device?

mh / the process model I

device

process

I/O bus

I/O MMU

Memory bus

IRQ
mapper

memory

mh / the process model II

Each process has memory and a bus.

Memory:

– note the absence of the MMU. It is physical
memory and cannot be mapped twice in the
process address space

– The allocation is negotiated with the microkernel:
syscall to map a new page in the address space

– Pagefault exceptions delivered to the process,
making it possible to allocate memory at run time

mh / the process model III

Process bus:

– A process plugs a device selected from the devices registered to
the system. open()

– A process can unplug a device at any time. close()

– A process may map a device IRQ to a process interrupt.
irqmap()

– A process can give access to physical memory to a device by
programming a per-device IO-MMU that creates a shared I/O
memory address space. export(dev, va, ioaddr)

– A process can send and receive data in the I/O bus space to the
device's I/O port. in(), out()

Remarkably, no MMIO.

mh / the process model IV

Process control

● Interrupt and Exceptions:

– Exceptions and interrupts can be delivered to a
specific IP / stack pointer, specified by the process.

– Special syscall, sys_iret(), to restore back to the
IP/Stack pointer specified in the stack.

– A process can enable and disable interrupt delivery,
sys_cli(), sys_sti()

– A process can enter a halted state and be awaken
by the next interrupt. sys_wait()

mh / the device model I

device

process

IRQ lines

Memory import
process

process

I/O requests

mh / the device model II

Every process can be a device

● A process registers itself as a device by calling
creat(), specifying a name ID (64 bit), a vendor ID
and a device ID

– Using DEC RAD50 we can pack 12 case insensitive
characters in a 64 bit ID

● When a device process dies the device is
unregistered on all the buses where it is plugged.

● A device process receive I/O notifications from
clients through an interrupt specified in creat()

mh / the device model III

Device operations:

● Poll from the request queues from the device. poll()

● Raise process specific IRQ line. irq(id, irq)

● Access the process I/O memory address space, by
importing process memory from the I/O MMU.
import(id, ioaddr, va)

● Signaling the end of I/O processing to the process,
which will raise the special EIOIRQ (#0) to the
process. eio(id)

mh / actual examples I

● Too simple device loop:

cfg.nameid = 500;
cfg.vendorid = 0xf00ffa;
cfg.deviceid = 1;
sys_creat(&cfg, interrupt_number, mode);

while (1) {
unsigned id;
struct sys_poll_ior ior;

sys_wait();
id = sys_poll(&ior);
printf("I/O port %x, val %x\n", ior.port, ior.val);
sys_irq(id, 3);
sys_eio(id);

}

mh / actual examples II

● Process code:

size_t exported_mem_size = 1024;
struct sys_creat_cfg cfg;
int desc, ret;
void *p;

p = drex_mmap(NULL, exported_mem_size,
 PROT_READ|PROT_WRITE, MAP_ANON, -1, 0);

desc = sys_open(500);
sys_mapirq(desc, 0, 5);
sys_export(desc, p, 0);
sys_readcfg(desc, &cfg);
printf("cfg: %llx %lx %lx\n",
 cfg.nameid, cfg.vendorid, cfg.deviceid);
sys_out(desc, 10, 255);
sys_wait();
printf("IRQ received!\n");

mh / all the rest I

We have seen how we lowered the abstraction interfaces of UNIX in the
murgiahack microkernel. What about the rest?

The approach is to keep things as close as possible to UNIX.

● Fork()

– The fork() syscall creates a readonly copy of the process, the copying is made
and mapped inside the process exception handler. Memory is still reference
counted in the microkernel, so last process to write gets the original copy.

– Child does not inherit devices in the parent bus. But they can be plugged in
the device the same way in UNIX-like systems we modify descriptors of a
child after a fork().

mh / all the rest II

● Resource ownership and permission checks

– Unlike many microkernels, we keep the original
UNIX scheme of UID/GID.

– Each process inherit UID/GID from parents and
follow the same semantics of a POSIX system
(effective, saved-set-uid)

– Each device is created with a devmode_t flag,
which exactly like a mode_t in a UNIX creat() tells
the kernel who can plug the device to its bus.

mh / the exec problem

● exec() can be easily implemented in a library

– loading elf and mapping memory it's easy!

but:

● exec() is much more than that in UNIX

– the SETUID/SETGID mechanism.

setuid is a trusted mechanism to increase permission,
which is a privileged resource. Kernel must be aware.

setuid associated to a file, a concept we don't have and we
don't want to have.

mh / the exec solution!

What is exec()?

● A way to execute foreign and protected code

– “Hey, that's BIOS code!”

● Destroys the current state of the process, while
keeping external resources almost intact
(CLOEXEC apart)

– “Hey, that's a CPU RESET!”

mh / RESET I

device

process

I/O bus

I/O MMU

IRQ
mapper

memory

reset
vector

reset
code

reset line

Memory bus

mh / RESET II

● Process can give permission to a device to write to its RESET
vector.

● Device writes to the process RESET vector both memory and
associated UID/GID.

● Anytime it desires, a process can call reset() to execute code
in the reset vector at the UID/GID specified, while honoring
the saved-set-uid interface of UNIX.

● A process can of course write to its own reset vector.

– Interesting way to implement restartable servers!

mh / the libraries

● libdrex: a simple libOS that implements basic UNIX
commands. [Not there yet]

● libdirtio: Dirt I/O is a protocol almost identical to virtio (of
KVM and lguest) that let us have a standard way to
discover devices and communicate with them. [Almost
there]

– Only difference: address shared are I/O MMU addresses
and not guest address.

● NetBSD libc and headers in userspace.

● rump kernels support is easy and is very natural to the
mh architecture.

mh / last slide

● Exciting project to work on

● The environment it creates is really fun and
nice to play with

● Lot of things to do!

Code at http://github.com/glguida/mh

Questions?

http://github.com/glguida/mh

