Hurd, Rump kernel, sound, and USB

Samuel Thibault

2016 January 30th
It's all about freedom #0

“The freedom to run the program, for any purpose”

I.e.:

• Freedom from sysadmin!
 • WTH is fdisk/mke2fs/... hidden in /sbin?
 • I should be able to just work with my disk/network access

• Freedom to innovate
 • Experimental filesystem, personal work-flow, new kind of process combination,...

• Also provide freedom from misbehaving programs and drivers
Micro-kernel layering

Kernel

Tasks, memory, IPC

root

proc

ext2fs

pfinet

auth

user

sh

cp
Micro-kernel layering

- Server crash? Not a problem
 - “Computer bought the farm” is just an error, not something-of-the-death
- Easier to debug/tune
 - Just run gdb, gprof, ...
- Can dare crazy things
 - The Hurd console has dynamic font support
 - See chinese support in pseudo-graphical mode (actually pure VGA textmode!) of Debian installer.
- Kernel only handles Tasks, memory, IPC
Hurd possibilities

Kernel

ext2fs

pfinet

auth

proc

ftpfs

user

sh

cp

isofs

root
Hurd possibilities

- `settrans -c ~/ftp: /hurd/hostmux /hurd/ftpfs /`

 (just once for good)

- `settrans -a ~/mnt /hurd/iso9660fs

- `ls ~/mnt`

 README-or-FAIL

 ...

- Only downloads what is needed.

- Can be permanently stored in ext2fs

- `settrans ~/.signature /hurd/run /usr/games/fortune`
Example: interpose
TCP/IP stack

```
€ settrans -ca $HOME/servers/socket/2
    /hurd/pfinet -i $HOME/servers/tun0

€ openvpn ... $HOME/servers/tun0 &

€ remap /servers/socket/2
    $HOME/servers/socket/2

€€€ wget www.gnu.org
```

- My own translator
- Can plug my own VPN software
- Only wget accesses it (well, the shell too :))
But also

\[\text{\€ remap} \ /\text{bin}/\text{sh} \ \$\text{HOME}/\text{bin}/\text{sh} \]
\[\text{\€ remap} \ /\text{bin} \ \$\text{HOME}/\text{unionbin} \]

...

- Check out Stow/Nix/Guix!
How does it work?

ext2fs
pfinet
root
auth
proc
ftpfs
user
sh
libc
isofs
cp
libc
Kernel
Rationale

- **Everything** is an (interposable) RPC
- Translators exposed in the FS
 - The user gets to decide what/how to interpose
 - Without need for costly ptrace or fragile libc symbols interposition.
 - **Native** fakeroot/chroot
 - Fully virtualized and fine-grained interface
 - Just need to use what's provided by the admin, e.g.
 - `$HOME/
 - TCP/IP stack
 and pile over it
Hurd possibilities (cont'ed)
Hurd possibilities (cont'ed)

i.e. ISO image inside a partitioned disk image on ftp over a VPN
Hurd userland network support

/servers/socket/2 pfinet w3m

root Kernel eth0 user
Hurd userland network support

DDE layer
Linux 2.6.32 drivers
/dev/eth0

Kernel

root

eth0

pfinet

w3m

user
DDE stack

Based on TU-Dresden's DDE stack

- Zheng Da's GSOC
- Ported to Mach kernel
- Ported to Mach device interface
- Updated libdde_linux26 for long-term-supported linux 2.6.32
 - Most drivers (and mostly the really useful ones) just work without patches
- Used by default by Debian GNU/Hurd
DDE stack

- pfinet
- device_read
- device_write
- libmachdev
- pkg_xmit
- rx_callback
- netdde
- intr
- vm_allocate_contiguous
- kernel

Linux drivers

Linux API

libddee_linux26

ddekit API

libddeeikit
DDE stack

- Only two additions to the kernel
 - Interrupt delivery and masking
 - Physically-contiguous memory allocation
 - (Direct I/O access was already available)
- Performance similar to in-kernel driver
- Driver in a separate process
 - Can just crash and be happy with it...
 - Can easily debug and profile them
 - Stack smashing protection ;)
 - Could benefit from I/O MMU for better isolation.
 - For now drivers can just access all RAM...
Rump sound support, v0

BSD

src-gnu

librumpuser

sun

mplayer

libpciaccess

intr

vm_allocate_contiguous

kernel
Rump sound support, v1

BSD
src-gnu

librumpuser

intr
vm_allocate_contiguous

/libdev/pcm

mplayer

kernel
Rump sound support, v2

/dev/pcm

rumpuser

/home/samy/dev/pcm

rumpuser

PCI arbiter

IOMMU

intr vm_allocate_contiguous

kernel
Rump USB support
Rump USB support

- ext2fs
 - /dev/usbd0
 - rump-usb-storage
 - libusb
 - /dev/usb
 - rumpuser

- PCI arbiter
- IOMMU

- intr
- vm_allocate_contiguous
- kernel
Current State

Hardware support

• i686
• start of 64bit support
 • Kernel boots completely, now missing RPC 32/64bit translation
• DDE Linux 2.6.32 drivers layer for network boards
 • In userland netdde translator!
• IDE, Xorg, ...
• AHCI driver for SATA
• Xen PV domU
 • Required GNU Mach changes only
• Preliminary sound support through userland Rump
• No USB yet
Current State

Software support

• Quite stable
 • Have not reinstalled boxes for a decade.
 • Debian buildds keep building packages, no hang after weeks!

• ~80% of Debian archive builds out of tree
 • XFCE, almost gnome, almost KDE
 • Firefox (aka iceweasel), gnumeric, ...

• Standard *native* Debian Installer
Recent work

- GNU Guix
- Fixed native fakeroot
- SCM_CREDS
- Various optimizations
 - Node cache
 - Lockless reference counting
 - IPC table → radix tree
 - Kernel memory management
- New rpcscan tool
Releases

• Nice 0.401 release on April 2011.
• Arch Hurd LiveCD release on August 2011.
• Hurd 0.6 then 0.7, Mach 1.5 then 1.6, MIG 1.5 then 1.6
• Released Debian-unofficial
 • wheezy/sid snapshot CDs on May 2013 \o/
 • jessie/sid snapshot CDs on May 2015 \o/
Future work

- X86_64 support
- Read-ahead
- {sound,usb} Rump drivers
- GNU system: Guix/Hurd?
- Startup in scheme?
- Your own pet project?
Thanks!

- http://hurd.gnu.org/
- http://www.debian.org/ports/hurd/
- The increasing irrelevance of IPC performance for microkernel-based Operating Systems
