
An Exploration of the seL4 Kernel
from Genode’s Perspective

Norman Feske
<norman.feske@genode-labs.com>



Outline

1. Background (Genode)

2. The seL4 project

3. Capabilities and kernel objects

4. Virtual memory

5. What’s next?

An Exploration of the seL4 Kernel from Genode’s Perspective 2



Outline

1. Background (Genode)

2. The seL4 project

3. Capabilities and kernel objects

4. Virtual memory

5. What’s next?

An Exploration of the seL4 Kernel from Genode’s Perspective 3



Motivations behind Genode

Principle of least privilege

Mixed criticality

Dependability

Scalability

Flexibility

An Exploration of the seL4 Kernel from Genode’s Perspective 4



Motivations behind Genode

Principle of least privilege

Mixed criticality

Dependability

Scalability

Flexibility

An Exploration of the seL4 Kernel from Genode’s Perspective 4



Motivations behind Genode

Principle of least privilege

Mixed criticality

Dependability

Scalability

Flexibility

An Exploration of the seL4 Kernel from Genode’s Perspective 4



Motivations behind Genode

Principle of least privilege

Mixed criticality

Dependability

Scalability

Flexibility

An Exploration of the seL4 Kernel from Genode’s Perspective 4



Motivations behind Genode

Principle of least privilege

Mixed criticality

Dependability

Scalability

Flexibility

An Exploration of the seL4 Kernel from Genode’s Perspective 4



Key technologies

Microkernels

Componentization, kernelization

Capability-based security

Virtualization

...but how to compose those?

An Exploration of the seL4 Kernel from Genode’s Perspective 5



Key technologies

Microkernels

Componentization, kernelization

Capability-based security

Virtualization

...but how to compose those?

An Exploration of the seL4 Kernel from Genode’s Perspective 5



Genode architecture

→ Application-specific TCB

An Exploration of the seL4 Kernel from Genode’s Perspective 6



Combined with virtualization

An Exploration of the seL4 Kernel from Genode’s Perspective 7



Genode operating-system framework

An Exploration of the seL4 Kernel from Genode’s Perspective 8



Genode operating-system framework

An Exploration of the seL4 Kernel from Genode’s Perspective 8



The Book “Genode Foundations”

GENODE
Operating System Framework

Foundations
Norman Feske

http://genode.org/documentation/genode-foundations-15-05.pdf

An Exploration of the seL4 Kernel from Genode’s Perspective 9



Outline

1. Background (Genode)

2. The seL4 project

3. Capabilities and kernel objects

4. Virtual memory

5. What’s next?

An Exploration of the seL4 Kernel from Genode’s Perspective 10



The seL4 kernel

Developed by NICTA (DATA61) / UNSW in Sydney

The world’s first formally verified OS kernel

Capability-based security

Resilient against kernel-resource exhaustion

Supports ARM and x86

GPLv2 since August 2014

Active and dedicated community

An Exploration of the seL4 Kernel from Genode’s Perspective 11



The seL4 kernel

Developed by NICTA (DATA61) / UNSW in Sydney

The world’s first formally verified OS kernel

Capability-based security

Resilient against kernel-resource exhaustion

Supports ARM and x86

GPLv2 since August 2014

Active and dedicated community

An Exploration of the seL4 Kernel from Genode’s Perspective 11



The seL4 kernel

Developed by NICTA (DATA61) / UNSW in Sydney

The world’s first formally verified OS kernel

Capability-based security

Resilient against kernel-resource exhaustion

Supports ARM and x86

GPLv2 since August 2014

Active and dedicated community

An Exploration of the seL4 Kernel from Genode’s Perspective 11



Outline

1. Background (Genode)

2. The seL4 project

3. Capabilities and kernel objects

4. Virtual memory

5. What’s next?

An Exploration of the seL4 Kernel from Genode’s Perspective 12



seL4 kernel-object inventory

seL4 kernel object Analogy
UntypedObject Range of physical memory
TCBObject Thread
EndpointObject Destination of IPC calls
AsyncEndpointObject Recipient of signals
CapTableObject (“CNode”) Array of capabilities
IA32_4K 4 KiB page frame
IA32_4M 4 MiB page frame
IA32_PageTableObject Page table
IA32_PageDirectoryObject Protection domain

An Exploration of the seL4 Kernel from Genode’s Perspective 13



seL4 capabilities (“selectors”)

CSpace
...

0x5
0x6

...
0xfff

CNode
...

0x55
...

0xff

CNode
...

0xffff

CNode
...

0x200
...

0xfff

An Exploration of the seL4 Kernel from Genode’s Perspective 14



Startup

Once upon a time, there was untyped memory...

--- boot info ---
initThreadCNodeSizeBits: 12
untyped: [38,4d)

[38] [00100000,00107fff]
[39] [00108000,00109fff]
[3a] [001a0000,001bffff]
[3b] [001c0000,001fffff]
[3c] [00200000,003fffff]
[3d] [00400000,007fffff]
[3e] [00800000,00ffffff]
[3f] [01000000,01ffffff]
[40] [02000000,02ffffff]
[41] [03000000,037fffff]
[42] [03800000,03bfffff]
[43] [03c00000,03dfffff]
[44] [03e00000,03efffff]
[45] [03f00000,03f7ffff]
[46] [03f80000,03fbffff]
[47] [03fc0000,03fdffff]
[48] [03fe0000,03feffff]
[49] [03ff0000,03ff7fff]
[4a] [03ff8000,03ffbfff]
[4b] [03ffc000,03ffdfff]
[4c] [00189000,001897ff]

An Exploration of the seL4 Kernel from Genode’s Perspective 15



Kernel-object creation

CSpace
...

0x44
...
...

Untyped Memory

An Exploration of the seL4 Kernel from Genode’s Perspective 16



Kernel-object creation (2)

CSpace
...

0x17
...

0x44
...
... Untyped Memory

offset

Endpoint

seL4 Untype Retype

An Exploration of the seL4 Kernel from Genode’s Perspective 17



Managing untyped memory

Book keeping
I Tracking of free physical memory
I seL4: physical address range ↔ untyped memory selector

Untyped memory regions are naturally aligned

There are adjacent untyped memory regions

Kernel objects cannot span multiple untyped memory regions

→ Trick: natural alignment of all allocations

An Exploration of the seL4 Kernel from Genode’s Perspective 18



Managing untyped memory

Book keeping
I Tracking of free physical memory
I seL4: physical address range ↔ untyped memory selector

Untyped memory regions are naturally aligned

There are adjacent untyped memory regions

Kernel objects cannot span multiple untyped memory regions

→ Trick: natural alignment of all allocations

An Exploration of the seL4 Kernel from Genode’s Perspective 18



Managing untyped memory

Book keeping
I Tracking of free physical memory
I seL4: physical address range ↔ untyped memory selector

Untyped memory regions are naturally aligned

There are adjacent untyped memory regions

Kernel objects cannot span multiple untyped memory regions

→ Trick: natural alignment of all allocations

An Exploration of the seL4 Kernel from Genode’s Perspective 18



Managing untyped memory

Book keeping
I Tracking of free physical memory
I seL4: physical address range ↔ untyped memory selector

Untyped memory regions are naturally aligned

There are adjacent untyped memory regions

Kernel objects cannot span multiple untyped memory regions

→ Trick: natural alignment of all allocations

An Exploration of the seL4 Kernel from Genode’s Perspective 18



Managing untyped memory

Book keeping
I Tracking of free physical memory
I seL4: physical address range ↔ untyped memory selector

Untyped memory regions are naturally aligned

There are adjacent untyped memory regions

Kernel objects cannot span multiple untyped memory regions

→ Trick: natural alignment of all allocations

An Exploration of the seL4 Kernel from Genode’s Perspective 18



Core’s CSpace organization

CSpace

0x0
0x1

...
x
...

0xfff

CNode
0x0

...
0x3f

CNode
...

core-local
kernel
objects

...

0x3fff

CNode
...

core-local
mapped
pages and
page tables

...

CNode
...

PD
mapped
pages and
page tables

...

CNode
...

physical
page
frames

...

0xfffff

An Exploration of the seL4 Kernel from Genode’s Perspective 19



Capability delegation and invocation

PD A PD B

Endpoint

3

Local
Object 45

13

minted endpoint

mint(45)
send
13

17
new

selector

send
17

unwrap

45

An Exploration of the seL4 Kernel from Genode’s Perspective 20



Capability delegation and invocation

PD A PD B

Endpoint

3

Local
Object 45

13

minted endpoint

mint(45)
send
13

17
new

selector

send
17

unwrap

45

An Exploration of the seL4 Kernel from Genode’s Perspective 20



Capability re-identification problem

PD A PD B PD C

13
Local

Object 45
minted
endpoint send

13
17

new
selector

meta data

send
17

34
new

selector

send
34

18

new
selector

???

An Exploration of the seL4 Kernel from Genode’s Perspective 21



Capability re-identification problem

PD A PD B PD C

13
Local

Object 45
minted
endpoint send

13
17

new
selector

meta data

send
17

34
new

selector

send
34

18

new
selector

???

An Exploration of the seL4 Kernel from Genode’s Perspective 21



Problem in Genode

Parent

Server Client

An Exploration of the seL4 Kernel from Genode’s Perspective 22



Current workaround

PD A PD B PD C

13
Local

Object 45
minted
endpoint send 13

hint ”45”
17

new
selector

meta data

send 17
hint ”45”

34
new

selector

send 34
hint ”45”

18

discard
new

selector

”45”

17
send 17
hint ”45”

An Exploration of the seL4 Kernel from Genode’s Perspective 23



Current workaround

PD A PD B PD C

13
Local

Object 45
minted
endpoint send 13

hint ”45”
17

new
selector

meta data

send 17
hint ”45”

34
new

selector

send 34
hint ”45”

18

discard
new

selector

”45”

17
send 17
hint ”45”

An Exploration of the seL4 Kernel from Genode’s Perspective 23



Outline

1. Background (Genode)

2. The seL4 project

3. Capabilities and kernel objects

4. Virtual memory

5. What’s next?

An Exploration of the seL4 Kernel from Genode’s Perspective 24



Virtual memory management

Problem

Applications live in virtual memory
→ The kernel maintains meta data and page tables

Where to take the memory from?
→ Traditional approach: kernel-local memory pool

What happens when the memory get exhausted?
→ Panic!

Who provokes kernel memory consumption?
→ Untrusted application code!

An Exploration of the seL4 Kernel from Genode’s Perspective 25



Virtual memory management

Problem

Applications live in virtual memory
→ The kernel maintains meta data and page tables

Where to take the memory from?

→ Traditional approach: kernel-local memory pool

What happens when the memory get exhausted?
→ Panic!

Who provokes kernel memory consumption?
→ Untrusted application code!

An Exploration of the seL4 Kernel from Genode’s Perspective 25



Virtual memory management

Problem

Applications live in virtual memory
→ The kernel maintains meta data and page tables

Where to take the memory from?
→ Traditional approach: kernel-local memory pool

What happens when the memory get exhausted?
→ Panic!

Who provokes kernel memory consumption?
→ Untrusted application code!

An Exploration of the seL4 Kernel from Genode’s Perspective 25



Virtual memory management

Problem

Applications live in virtual memory
→ The kernel maintains meta data and page tables

Where to take the memory from?
→ Traditional approach: kernel-local memory pool

What happens when the memory get exhausted?

→ Panic!

Who provokes kernel memory consumption?
→ Untrusted application code!

An Exploration of the seL4 Kernel from Genode’s Perspective 25



Virtual memory management

Problem

Applications live in virtual memory
→ The kernel maintains meta data and page tables

Where to take the memory from?
→ Traditional approach: kernel-local memory pool

What happens when the memory get exhausted?
→ Panic!

Who provokes kernel memory consumption?

→ Untrusted application code!

An Exploration of the seL4 Kernel from Genode’s Perspective 25



Virtual memory management

Problem

Applications live in virtual memory
→ The kernel maintains meta data and page tables

Where to take the memory from?
→ Traditional approach: kernel-local memory pool

What happens when the memory get exhausted?
→ Panic!

Who provokes kernel memory consumption?
→ Untrusted application code!

An Exploration of the seL4 Kernel from Genode’s Perspective 25



The seL4 way of virtual memory management

CSpace
...

0x5
0x6
0x7

...

Page dir
...

0x1
...

0x3ff

Page table
...

0x1
...

0x3ff

4 KiB
page frame

Virtual memory

0x0

0x401000

An Exploration of the seL4 Kernel from Genode’s Perspective 26



The seL4 way of virtual memory management

CSpace
...

0x5
0x6
0x7

...

Page dir
...

0x1
...

0x3ff

Page table
...

0x1
...

0x3ff

4 KiB
page frame

Virtual memory

0x0

0x401000

An Exploration of the seL4 Kernel from Genode’s Perspective 26



Attempt to map a page twice

CSpace
...

0x5
0x6
0x7

...

Page dir
...

0x1
...

0x3ff

Page table
...

0x1
...

0x10
...

0x3ff

4 KiB
page frame

Virtual memory

0x0

0x401000

<< Frame already mapped >>

An Exploration of the seL4 Kernel from Genode’s Perspective 27



Attempt to map a page twice

CSpace
...

0x5
0x6
0x7

...

Page dir
...

0x1
...

0x3ff

Page table
...

0x1
...

0x10
...

0x3ff

4 KiB
page frame

Virtual memory

0x0

0x401000

<< Frame already mapped >>

An Exploration of the seL4 Kernel from Genode’s Perspective 27



Mapping a page twice, the seL4 way

CSpace
...

0x5
0x6
0x7

...
0x13

...

copy

Page dir
...

0x1
...

0x3ff

Page table
...

0x1
...

0x10
...

0x3ff

4 KiB
page frame

Virtual memory

0x0

0x401000

0x410000

An Exploration of the seL4 Kernel from Genode’s Perspective 28



Implications for Genode

On Genode, each page must be considered as shared memory

→ One kernel object (CNode entry) for each page-table entry

→ How to name the selectors? Preallocation is infeasible.

Solution: Virtual software-loaded TLB

Fixed pool of page tables per PD, used in LRU fashion

Leveraging Genode’s resource trading mechanism:
→ Page-table pool size is a PD-specific

An Exploration of the seL4 Kernel from Genode’s Perspective 29



Implications for Genode

On Genode, each page must be considered as shared memory

→ One kernel object (CNode entry) for each page-table entry

→ How to name the selectors? Preallocation is infeasible.

Solution: Virtual software-loaded TLB

Fixed pool of page tables per PD, used in LRU fashion

Leveraging Genode’s resource trading mechanism:
→ Page-table pool size is a PD-specific

An Exploration of the seL4 Kernel from Genode’s Perspective 29



Implications for Genode

On Genode, each page must be considered as shared memory

→ One kernel object (CNode entry) for each page-table entry

→ How to name the selectors?

Preallocation is infeasible.

Solution: Virtual software-loaded TLB

Fixed pool of page tables per PD, used in LRU fashion

Leveraging Genode’s resource trading mechanism:
→ Page-table pool size is a PD-specific

An Exploration of the seL4 Kernel from Genode’s Perspective 29



Implications for Genode

On Genode, each page must be considered as shared memory

→ One kernel object (CNode entry) for each page-table entry

→ How to name the selectors? Preallocation is infeasible.

Solution: Virtual software-loaded TLB

Fixed pool of page tables per PD, used in LRU fashion

Leveraging Genode’s resource trading mechanism:
→ Page-table pool size is a PD-specific

An Exploration of the seL4 Kernel from Genode’s Perspective 29



Implications for Genode

On Genode, each page must be considered as shared memory

→ One kernel object (CNode entry) for each page-table entry

→ How to name the selectors? Preallocation is infeasible.

Solution: Virtual software-loaded TLB

Fixed pool of page tables per PD, used in LRU fashion

Leveraging Genode’s resource trading mechanism:
→ Page-table pool size is a PD-specific

An Exploration of the seL4 Kernel from Genode’s Perspective 29



Implications for Genode

On Genode, each page must be considered as shared memory

→ One kernel object (CNode entry) for each page-table entry

→ How to name the selectors? Preallocation is infeasible.

Solution: Virtual software-loaded TLB

Fixed pool of page tables per PD, used in LRU fashion

Leveraging Genode’s resource trading mechanism:
→ Page-table pool size is a PD-specific

An Exploration of the seL4 Kernel from Genode’s Perspective 29



Outline

1. Background (Genode)

2. The seL4 project

3. Capabilities and kernel objects

4. Virtual memory

5. What’s next?

An Exploration of the seL4 Kernel from Genode’s Perspective 30



What’s next?

seL4 2.0

Signal API backend, interrupts

Memory-mapped I/O

Real lock implementation

Shared library support

→ Interactive scenarios by mid 2016

An Exploration of the seL4 Kernel from Genode’s Perspective 31



Open issues

Asynchronous notifications

Capability integrity protection

Superpages

An Exploration of the seL4 Kernel from Genode’s Perspective 32



Open issues

Asynchronous notifications

Capability integrity protection

Superpages

An Exploration of the seL4 Kernel from Genode’s Perspective 32



Open issues

Asynchronous notifications

Capability integrity protection

Superpages

An Exploration of the seL4 Kernel from Genode’s Perspective 32



Thank you

Articles about Genode on seL4
http://genode.org/documentation/articles

Genode OS Framework
http://genode.org

Genode Labs GmbH
http://www.genode-labs.com

Source code at GitHub
http://github.com/genodelabs/genode

An Exploration of the seL4 Kernel from Genode’s Perspective 33


	Background (Genode)
	The seL4 project
	Capabilities and kernel objects
	Virtual memory
	What's next?

