An Exploration of the selL.4 Kernel
from Genode's Perspective

&

Norman Feske
<norman.feske@genode-labs.com>

. Background (Genode)

. The selL4 project
. Capabilities and kernel objects
4. Virtual memory

. What's next?

. Background (Genode)

. The selL4 project

. Capabilities and kernel objects

. Virtual memory

. What's next?

= Principle of least privilege

Motivations behind Genode

= Principle of least privilege

» Mixed criticality

Motivations behind Genode

= Principle of least privilege

» Mixed criticality

» Dependability

Motivations behind Genode

Principle of least privilege

Mixed criticality

Dependability

Scalability

Motivations behind Genode

Principle of least privilege

Mixed criticality

Dependability

Scalability

Flexibility

Key technologies

Microkernels

Componentization, kernelization

Capability-based security

Virtualization

Key technologies

Microkernels

Componentization, kernelization

Capability-based security

Virtualization

...but how to compose those?

Genode architecture

— Application-specific TCB

Combined with virtualization

| GDB Monitor

oader CLI Monitor
— S —

readiine
Lighttpd ~ STDC++ muPDF

Lua sbL libav

it

\% The Book “Genode Foundations”

GENODE

Operating System Framework

Foundations

http://genode.org/documentation /genode-foundations-15-05.pdf

. Background (Genode)

. The selL4 project

. Capabilities and kernel objects

. Virtual memory

. What's next?

The seL4 kernel

= Developed by NICTA (DATA61) / UNSW in Sydney

» The world’s first formally verified OS kernel

The sel4 kernel

Developed by NICTA (DATA61) / UNSW in Sydney

The world’s first formally verified OS kernel
Capability-based security
Resilient against kernel-resource exhaustion

Supports ARM and x86

The sel4 kernel

Developed by NICTA (DATA61) / UNSW in Sydney

The world’s first formally verified OS kernel
Capability-based security

Resilient against kernel-resource exhaustion
Supports ARM and x86

GPLV2 since August 2014

Active and dedicated community

. Background (Genode)

. The selL4 project
. Capabilities and kernel objects
. Virtual memory

. What's next?

@ seL4 kernel-object inventory

seL4 kernel object | Analogy |

UntypedObject Range of physical memory
TCBObject Thread

Endpoint0Object Destination of IPC calls
AsyncEndpointObject Recipient of signals
CapTableObject (“CNode”) | Array of capabilities
IA32_4K 4 KiB page frame
TA32_4M 4 MiB page frame
IA32_PageTableObject Page table
TA32_PageDirectory0Object | Protection domain

selL4 capabilities (“selectors”

CNode

Oxffff

CNode

0x55 (2

Oxff

Startup

Once upon a time, there was untyped memory...

--- boot info ---
initThreadCNodeSizeBits: 12
untyped: [38,4d)
[38] [00100000,00107fff]
[39]1 [00108000,00109fff]
[3a] [001a0000,001bffff]
[3b] [001c0000,001fffff]
[3c] [00200000,003fffff]
[3d] [00400000,007fffff]
[3e] [00800000,00ffffff]
[3f] [01000000,01ffffff]
[40] [02000000,02ffffff]
[41] [03000000,037fffff]
[42] [03800000,03bfffff]
[43] [03c00000,03dfffff]
[44] [03e00000,03efffff]
[45] [03£00000,03f7ffff]
[46]1 [03£80000,03fbffff]
[47] [03£c0000,03fdffff]
[48] [03£fe0000,03feffff]
[49]1 [03££0000,03ff7fff]
[4a] [03££8000,03ffbfff]
[4b] [03£f£c000,03ffdfff]
[4c] [00189000,001897£f]

Kernel-object creation

Untyped Memory

Kernel-object creation (2)

seL4 _Untype_Retype

Untyped Memory

Endpoint

Book keeping

» Tracking of free physical memory
» sel4: physical address range <+ untyped memory selector

Book keeping

» Tracking of free physical memory
» sel4: physical address range <+ untyped memory selector

= Untyped memory regions are naturally aligned

\\\\)é. Managing untyped memory

» Book keeping

» Tracking of free physical memory
» sel4: physical address range <+ untyped memory selector

= Untyped memory regions are naturally aligned

» There are adjacent untyped memory regions

Managing untyped memory

Book keeping

» Tracking of free physical memory
» sel4: physical address range <+ untyped memory selector

Untyped memory regions are naturally aligned

There are adjacent untyped memory regions

Kernel objects cannot span multiple untyped memory regions

Managing untyped memory

Book keeping

» Tracking of free physical memory
» sel4: physical address range <+ untyped memory selector

Untyped memory regions are naturally aligned

There are adjacent untyped memory regions

Kernel objects cannot span multiple untyped memory regions

— Trick: natural alignment of all allocations

Core's CSpace organization

CNode

0x0

CNode

CNode

0x3f

CNode

physical
page
frames

PD
mapped
pages and
page tables

core-local
mapped
pages and

CNode

page tables

Oxfffff

core-local
kernel
objects

0x3fff

Capability delegation and invocation

Endpoint

Object 45

ap e

mint(45)

minted endpoint

new
selector

UNwWrap

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
)

@
minted
endpoint

=
£
o
(®)
.
o
(c
S
)
©
O
=
4+
(=
(]
o
O
| -
>
b=
G
[g0]
oL
(g]
)

Object 45

Serve

Clientl

v

Object 45 N

) hint " 45"
I discard I

I new !
Iselector
!

hint " 45"
1

!
: " 4517

O

| hint 45"

selector!

. Background (Genode)

. The selL4 project
. Capabilities and kernel objects
. Virtual memory

. What's next?

ement

= Applications live in virtual memory
— The kernel maintains meta data and page tables

\\\\é Virtual memory management

Problem

= Applications live in virtual memory
— The kernel maintains meta data and page tables

= Where to take the memory from?

\\\\)é. Virtual memory management

Problem

Applications live in virtual memory
— The kernel maintains meta data and page tables

Where to take the memory from?
— Traditional approach: kernel-local memory pool

\\\//‘ Virtual memory management

Problem

Applications live in virtual memory
— The kernel maintains meta data and page tables

Where to take the memory from?
— Traditional approach: kernel-local memory pool

What happens when the memory get exhausted?

\\\//‘. Virtual memory management

Problem

Applications live in virtual memory
— The kernel maintains meta data and page tables

Where to take the memory from?
— Traditional approach: kernel-local memory pool

What happens when the memory get exhausted?
— Panic!

Who provokes kernel memory consumption?

\- Virtual memory management

Problem

Applications live in virtual memory
— The kernel maintains meta data and page tables

Where to take the memory from?
— Traditional approach: kernel-local memory pool

What happens when the memory get exhausted?
— Panic!

Who provokes kernel memory consumption?
— Untrusted application code!

@ The selL.4 way of virtual memory management

Page dir

0x1 o .. Virtual memory

0x0

0x3ff

Page table 0x401000

0x1 @)

0x3ff

4 KiB
page frame

& Attempt to map a page twice

CSpace Page dir

0x5 @ ox1) Virtual memory

0x7 0x3ff

0x0

Page table 0%401000

Y ~....,_) OX]. ‘. .

<< Frame already mapped >> “~>§ 0x10

0x3ff

4 KiB
page frame

@ Mapping a page twice, the selL4 way

Page dir

0x1) Virtual memory

0x0

0x3ff

Page table 0x401000

0x410000

0ox1 o .

0x10 @] ¢

0x3ff

4 KiB
page frame

Implications for Genode

On Genode, each page must be considered as shared memory

Implications for Genode

On Genode, each page must be considered as shared memory

— One kernel object (CNode entry) for each page-table entry

Implications for Genode

On Genode, each page must be considered as shared memory
— One kernel object (CNode entry) for each page-table entry

— How to name the selectors?

Implications for Genode

On Genode, each page must be considered as shared memory
— One kernel object (CNode entry) for each page-table entry

— How to name the selectors? Preallocation is infeasible.

Implications for Genode

On Genode, each page must be considered as shared memory
— One kernel object (CNode entry) for each page-table entry
— How to name the selectors? Preallocation is infeasible.

Solution: Virtual software-loaded TLB

» Fixed pool of page tables per PD, used in LRU fashion

& Implications for Genode

On Genode, each page must be considered as shared memory

— One kernel object (CNode entry) for each page-table entry

— How to name the selectors? Preallocation is infeasible.

Solution: Virtual software-loaded TLB

» Fixed pool of page tables per PD, used in LRU fashion

» Leveraging Genode's resource trading mechanism:
— Page-table pool size is a PD-specific

. Background (Genode)

. The selL4 project
. Capabilities and kernel objects
. Virtual memory

. What's next?

What's next?

selL4 2.0

Signal API backend, interrupts

Memory-mapped 1/0

Real lock implementation

Shared library support

— Interactive scenarios by mid 2016

= Asynchronous notifications

= Asynchronous notifications

» Capability integrity protection

= Asynchronous notifications

» Capability integrity protection

» Superpages

W~ Thank you

Articles about Genode on sel 4
http://genode.org/documentation/articles

Genode OS Framework
http://genode.org

Genode Labs GmbH
http://www.genode-labs.com

Source code at GitHub
http://github.com/genodelabs/genode

	Background (Genode)
	The seL4 project
	Capabilities and kernel objects
	Virtual memory
	What's next?

