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Motivations behind Genode

Principle of least privilege

Mixed criticality

Dependability

Scalability

Flexibility

An Exploration of the seL4 Kernel from Genode’s Perspective 4



Motivations behind Genode

Principle of least privilege

Mixed criticality

Dependability

Scalability

Flexibility

An Exploration of the seL4 Kernel from Genode’s Perspective 4



Motivations behind Genode

Principle of least privilege

Mixed criticality

Dependability

Scalability

Flexibility

An Exploration of the seL4 Kernel from Genode’s Perspective 4



Motivations behind Genode

Principle of least privilege

Mixed criticality

Dependability

Scalability

Flexibility

An Exploration of the seL4 Kernel from Genode’s Perspective 4



Motivations behind Genode

Principle of least privilege

Mixed criticality

Dependability

Scalability

Flexibility

An Exploration of the seL4 Kernel from Genode’s Perspective 4



Key technologies

Microkernels

Componentization, kernelization

Capability-based security

Virtualization

...but how to compose those?
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Genode architecture

→ Application-specific TCB
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Combined with virtualization
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Genode operating-system framework
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The Book “Genode Foundations”

GENODE
Operating System Framework

Foundations
Norman Feske

http://genode.org/documentation/genode-foundations-15-05.pdf
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The seL4 kernel

Developed by NICTA (DATA61) / UNSW in Sydney

The world’s first formally verified OS kernel

Capability-based security

Resilient against kernel-resource exhaustion

Supports ARM and x86

GPLv2 since August 2014

Active and dedicated community
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seL4 kernel-object inventory

seL4 kernel object Analogy
UntypedObject Range of physical memory
TCBObject Thread
EndpointObject Destination of IPC calls
AsyncEndpointObject Recipient of signals
CapTableObject (“CNode”) Array of capabilities
IA32_4K 4 KiB page frame
IA32_4M 4 MiB page frame
IA32_PageTableObject Page table
IA32_PageDirectoryObject Protection domain
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seL4 capabilities (“selectors”)

CSpace
...

0x5
0x6

...
0xfff

CNode
...

0x55
...

0xff

CNode
...

0xffff

CNode
...

0x200
...

0xfff
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Startup

Once upon a time, there was untyped memory...

--- boot info ---
initThreadCNodeSizeBits: 12
untyped: [38,4d)

[38] [00100000,00107fff]
[39] [00108000,00109fff]
[3a] [001a0000,001bffff]
[3b] [001c0000,001fffff]
[3c] [00200000,003fffff]
[3d] [00400000,007fffff]
[3e] [00800000,00ffffff]
[3f] [01000000,01ffffff]
[40] [02000000,02ffffff]
[41] [03000000,037fffff]
[42] [03800000,03bfffff]
[43] [03c00000,03dfffff]
[44] [03e00000,03efffff]
[45] [03f00000,03f7ffff]
[46] [03f80000,03fbffff]
[47] [03fc0000,03fdffff]
[48] [03fe0000,03feffff]
[49] [03ff0000,03ff7fff]
[4a] [03ff8000,03ffbfff]
[4b] [03ffc000,03ffdfff]
[4c] [00189000,001897ff]
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Kernel-object creation

CSpace
...

0x44
...
...

Untyped Memory
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Kernel-object creation (2)

CSpace
...

0x17
...

0x44
...
... Untyped Memory

offset

Endpoint

seL4 Untype Retype
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Managing untyped memory

Book keeping
I Tracking of free physical memory
I seL4: physical address range ↔ untyped memory selector

Untyped memory regions are naturally aligned

There are adjacent untyped memory regions

Kernel objects cannot span multiple untyped memory regions

→ Trick: natural alignment of all allocations
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Core’s CSpace organization

CSpace

0x0
0x1

...
x
...

0xfff

CNode
0x0

...
0x3f

CNode
...

core-local
kernel
objects

...

0x3fff

CNode
...

core-local
mapped
pages and
page tables

...

CNode
...

PD
mapped
pages and
page tables

...

CNode
...

physical
page
frames

...

0xfffff
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Capability delegation and invocation

PD A PD B

Endpoint

3

Local
Object 45

13

minted endpoint

mint(45)
send
13

17
new

selector

send
17

unwrap

45
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Capability re-identification problem

PD A PD B PD C

13
Local

Object 45
minted
endpoint send

13
17

new
selector

meta data

send
17

34
new

selector

send
34

18

new
selector

???
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Problem in Genode

Parent

Server Client
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Current workaround

PD A PD B PD C

13
Local

Object 45
minted
endpoint send 13

hint ”45”
17

new
selector

meta data

send 17
hint ”45”

34
new

selector

send 34
hint ”45”

18

discard
new

selector

”45”

17
send 17
hint ”45”
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Virtual memory management

Problem

Applications live in virtual memory
→ The kernel maintains meta data and page tables

Where to take the memory from?
→ Traditional approach: kernel-local memory pool

What happens when the memory get exhausted?
→ Panic!

Who provokes kernel memory consumption?
→ Untrusted application code!
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The seL4 way of virtual memory management

CSpace
...

0x5
0x6
0x7

...

Page dir
...

0x1
...

0x3ff

Page table
...

0x1
...

0x3ff

4 KiB
page frame

Virtual memory

0x0

0x401000
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Attempt to map a page twice

CSpace
...

0x5
0x6
0x7

...

Page dir
...

0x1
...

0x3ff

Page table
...

0x1
...

0x10
...

0x3ff

4 KiB
page frame

Virtual memory

0x0

0x401000

<< Frame already mapped >>
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Mapping a page twice, the seL4 way

CSpace
...

0x5
0x6
0x7

...
0x13

...

copy

Page dir
...

0x1
...

0x3ff

Page table
...

0x1
...

0x10
...

0x3ff

4 KiB
page frame

Virtual memory

0x0

0x401000

0x410000
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Implications for Genode

On Genode, each page must be considered as shared memory

→ One kernel object (CNode entry) for each page-table entry

→ How to name the selectors? Preallocation is infeasible.

Solution: Virtual software-loaded TLB

Fixed pool of page tables per PD, used in LRU fashion

Leveraging Genode’s resource trading mechanism:
→ Page-table pool size is a PD-specific
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What’s next?

seL4 2.0

Signal API backend, interrupts

Memory-mapped I/O

Real lock implementation

Shared library support

→ Interactive scenarios by mid 2016
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Open issues

Asynchronous notifications

Capability integrity protection

Superpages
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Thank you

Articles about Genode on seL4
http://genode.org/documentation/articles

Genode OS Framework
http://genode.org

Genode Labs GmbH
http://www.genode-labs.com

Source code at GitHub
http://github.com/genodelabs/genode
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