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...but how to compose those?




Genode architecture

— Application-specific TCB




Combined with virtualization
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\% The Book “Genode Foundations”

GENODE

Operating System Framework

Foundations

http://genode.org/documentation /genode-foundations-15-05.pdf
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The sel4 kernel

Developed by NICTA (DATA61) / UNSW in Sydney

The world’s first formally verified OS kernel
Capability-based security

Resilient against kernel-resource exhaustion
Supports ARM and x86

GPLV2 since August 2014

Active and dedicated community
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@ seL4 kernel-object inventory

seL4 kernel object | Analogy |

UntypedObject Range of physical memory
TCBObject Thread

Endpoint0Object Destination of IPC calls
AsyncEndpointObject Recipient of signals
CapTableObject (“CNode”) | Array of capabilities
IA32_4K 4 KiB page frame
TA32_4M 4 MiB page frame
IA32_PageTableObject Page table
TA32_PageDirectory0Object | Protection domain




selL4 capabilities (“selectors”
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Startup

Once upon a time, there was untyped memory...

--- boot info ---
initThreadCNodeSizeBits: 12
untyped: [38,4d)
[38] [00100000,00107fff]
[39]1 [00108000,00109fff]
[3a] [001a0000,001bffff]
[3b] [001c0000,001fffff]
[3c] [00200000,003fffff]
[3d] [00400000,007fffff]
[3e] [00800000,00ffffff]
[3f] [01000000,01ffffff]
[40] [02000000,02ffffff]
[41] [03000000,037fffff]
[42] [03800000,03bfffff]
[43] [03c00000,03dfffff]
[44] [03e00000,03efffff]
[45] [03£00000,03f7ffff]
[46]1 [03£80000,03fbffff]
[47] [03£c0000,03fdffff]
[48] [03£fe0000,03feffff]
[49]1 [03££0000,03ff7fff]
[4a] [03££8000,03ffbfff]
[4b] [03£f£c000,03ffdfff]
[4c] [00189000,001897£f]




Kernel-object creation

Untyped Memory




Kernel-object creation (2)

seL4 _Untype_Retype

Untyped Memory

Endpoint
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Managing untyped memory

Book keeping

» Tracking of free physical memory
» sel4: physical address range <+ untyped memory selector

Untyped memory regions are naturally aligned

There are adjacent untyped memory regions

Kernel objects cannot span multiple untyped memory regions

— Trick: natural alignment of all allocations




Core's CSpace organization

CNode

0x0

CNode

CNode

0x3f

CNode

physical
page
frames

PD
mapped
pages and
page tables

core-local
mapped
pages and

CNode

page tables

Oxfffff

core-local
kernel
objects

0x3fff







Capability delegation and invocation
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\- Virtual memory management

Problem

Applications live in virtual memory
— The kernel maintains meta data and page tables

Where to take the memory from?
— Traditional approach: kernel-local memory pool

What happens when the memory get exhausted?
— Panic!

Who provokes kernel memory consumption?
— Untrusted application code!







@ The selL.4 way of virtual memory management

Page dir
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& Attempt to map a page twice
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@ Mapping a page twice, the selL4 way

Page dir

0x1 ) Virtual memory
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& Implications for Genode

On Genode, each page must be considered as shared memory

— One kernel object (CNode entry) for each page-table entry

— How to name the selectors? Preallocation is infeasible.

Solution: Virtual software-loaded TLB

» Fixed pool of page tables per PD, used in LRU fashion

» Leveraging Genode's resource trading mechanism:
— Page-table pool size is a PD-specific
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What's next?

selL4 2.0

Signal API backend, interrupts

Memory-mapped 1/0

Real lock implementation

Shared library support

— Interactive scenarios by mid 2016
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= Asynchronous notifications

» Capability integrity protection

» Superpages




W~  Thank you

Articles about Genode on sel 4
http://genode.org/documentation/articles

Genode OS Framework
http://genode.org

Genode Labs GmbH
http://www.genode-labs.com

Source code at GitHub
http://github.com/genodelabs/genode
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