
Make your own USB device

without pain and money!

Krzysztof Opasiak

Samsung R&D Institute Poland



Agenda

What USB is about?

How to compose a device?

How to create a function?

Summary

Q & A

1



What USB is about?



What USB is about?

It is about providing services!

• Storage

• Printing

• Ethernet

• Camera

• Any other

3



What is USB device?

• Piece hardware for USB communication

• USB protocol implementation

• Some useful protocol implementation

• Piece of Hardware/Software for providing desired

functionality

4



Endpoints…

• Device may have up to 31 endpoints

(including ep0)

• Each of them gets an unique Endpoint address

• Endpoint 0 may transfer data in both directions

• All other endpoints may transfer data in one

direction:

IN Transfer data from device to host

OUT Transfer data from host to device

5



Endpoint types

• Control

• Bi-directional endpoint

• Used for enumeration

• Can be used for application

• Interrupt

• Transfers a small amount of low-latency data

• Reserves bandwidth on the bus

• Used for time-sensitive data (HID)

6



Endpoint types

• Bulk

• Used for large data transfers

• Used for large, time-insensitive data

(Network packets, Mass Storage, etc).

• Does not reserve bandwidth on bus, uses whatever

time is left over

• Isochronous

• Transfers a large amount of time-sensitive data

• Delivery is not guaranteed (no ACKs are sent)

• Used for Audio and Video streams

• Late data is as good as no data

• Better to drop a frame than to delay and force a

re-transmission

7



USB device

8



USB bus

• USB is a Host-controlled bus

• Nothing on the bus happens without the host first

initiating it.

• Devices cannot initiate any communication.

• The USB is a Polled Bus.

• The Host polls each device, requesting data or

sending data.

9



USB transfer vs transaction

• Transaction

• Delivery of data to endpoint

• Limited by wMaxPacketSize

• Transfer

• One or more transactions

• May be large or small

• Completion conditions

10



USB transport

IN
• Host sends an IN token

• If the device has data:

• Device sends data

• Host sends ACK

• else

• Device sends NAK

• Host will retry until

timeout

11



USB transport

OUT
• Host sends an OUT token

• Host sends the data (one

packet)

• If device accepts data
transfer:

• Device sends an ACK

• else

• Device sends an NAK

• Host will retry until

success or timeout
∗ PING, NYET - bandwidth savers

12



Plug and Play - step by step

• Plug in device

• Detect Connection

• Set address

• Get device info

• Choose configuration

• Choose drivers for

interfaces

• Use it ;)

13



Device details

• Each USB world entity is described by data

structure called descriptor

• Descriptors have different types, sizes and

content

• But they all have a common header

Field Size Value Description

bLength 1 Number Size of the Descriptor in Bytes

bDescriptorType 1 Constant Device Descriptor (0x01)

<data> bLength - 2 NA Payload

14



USB descriptors

15



USB classes
00h Device Use class information in the Interface Descriptors

01h Interface Audio

02h Both Communications and CDC Control

03h Interface HID (Human Interface Device)

05h Interface Physical

06h Interface Image

07h Interface Printer

08h Interface Mass Storage

09h Device Hub

0Ah Interface CDC-Data

0Bh Interface Smart Card

0Dh Interface Content Security

0Eh Interface Video

0Fh Interface Personal Healthcare

10h Interface Audio/Video Devices

11h Device Billboard Device Class

DCh Both Diagnostic Device

E0h Interface Wireless Controller

EFh Both Miscellaneous

FEh Interface Application Specific

FFh Both Vendor Specific

16



What USB driver really is?

• Piece of kernel code / libusb app

• Usually provides something to userspace

(network interface, block device, tty, etc.)

• Implementation of some communication protocol

• …so a little bit equivalent to your Web browser,

ssh client etc.

17



How to choose a suitable driver?

• struct usb_device_driver vs struct usb_driver

• When device needs special handling:

• Using VID and PID and interface id

• Driver probe()s for each interface in device that match

vid and pid

• When driver implements some well defined,
standardized protocol

• Using bInterfaceClass, bInterfaceSubClass etc.

• Driver probe() for each interface which has suitable

identity

• No matter what is the VID and PID

• Driver will not match if interface hasn't suitable class

18



Big picture

19



How to compose a device?



What is needed?

Need Solution

Suitable hardware Get some board with UDC

controller (BBB, Odroid etc.)

Implementation of USB

protocol

Use one from Linux kernel!

Implementation of some

useful protocol

A lot of protocols are avail-

able out of the box in Linux

kernel!

Desired functionality

provider

Let's use our system infras-

tructure!

21



Terminology
USB device = USB gadget + UDC

UDC driver Driver for USB Device Controller

USB function (type) driver which implements some

useful protocol (HID, Mass storage)

USB gadget Glue layer for functions.

• Handle enumeration

• Respond to most general requests

22



Device architecture overview

23



Prerequisites - menuconfig

24



Available functions
• Ethernet

• ECM
• EEM
• NCM
• Subset

• RNDIS

• Serial

• ACM
• Serial

• OBEX

• Mass Storage

• HID

• UVC

• UAC

• Printer

• Phonet

• Loopback and SourceSink

25



Base composition

• Fill the identity of gadget

• Vendor ID

• Product ID

• Device Class details

• Strings (manufacturer, product and serial)

• Decide what functions

• Decide how many configurations

• Decide what functions are available

in each configuration

26



But how to do this?

• Use bare kernel ConfigFS interface

Documentation/ABI/testing/
configfs-usb-gadget*

• Use libusbgx to create a program

https://github.com/libusbgx/libusbgx
• Use gt to create a simple script

https://github.com/kopasiak/gt
• Use gt to load gadget scheme

27

Documentation/ABI/testing/configfs-usb-gadget*
Documentation/ABI/testing/configfs-usb-gadget*
https://github.com/libusbgx/libusbgx
https://github.com/kopasiak/gt


What gadget schemes really are?

• Declarative gadget

description

• Simple configuration file

• libconfig syntax

• Interpreted by libusbgx

• Can be easily loaded using

gt load

attrs = {
idVendor = 0x1D6B
idProduct = 0xe1ce

}
strings = ({

lang = 0x409;
manufacturer = "Samsung"
product = "Sample␣gadget"
serialnumber = "FOSDEM2016"

})
functions = {

our_net = {
instance = "net1"
type = "ecm"

}
}
configs = ({

id = 1
name = "c"
strings = ({

lang = 0x409
configuration = "The␣only␣one"

})
functions = ("our_net")

})

28



Let's compose some device

29



How to create a function?



We can write a…?

Kernel function

• Requires writing

a kernel module

• May provide some

generic entity to

userspace

• Direct access to

hardware

FunctionFS

service

• Simple userspace

service

• Only single service

may communicate

with host

• Easier access to

system infrastructure

(fs, net, dbus, etc.)

31



What FunctionFS really is?

• USB function

• File system

• …which forwards all USB traffic to userspace

32



Basic concepts

• ep0 - communication + events + descriptors

• read() - schedule USB OUT request

• write() - schedule USB IN request

Device cannot initiate any

communication!

33



FunctionFS - HOWTO setup

• Create function instance (ConfigFS)

• mount file system (pass instance name as dev)

• open ep0 file

• Write function descriptors

• Write function strings

• Open epXX (if any)

• Read events from ep0

• BIND

• UNBIND

• ENABLE

• DISABLE

• SETUP

• read()/write() to other eps

34



Sample source & demo

35



Why we should use aio?

• read() and write() on ep blocks till end of transfer

• ep0 should be also handled for events

• Usually function has more than one endpoint

• Threads are not the best solution…

36



Summary



Summary

• USB is about providing a services

• Communication protocol is implemented on both
sides

• USB driver on host side

• USB function on device side

• There is a lot of USB functions in Linux kernel

which can be easily used

• Use some helpers instead of bare ConfigFS

interface

• While implementing own function consider using

FunctionFS

• Remember to use AIO in FFS

• Have fun with USB!

38



Q & A



Thank you!

Krzysztof Opasiak
Samsung R&D Institute Poland

+48 605 125 174

k.opasiak@samsung.com

40


	What USB is about?
	How to compose a device?
	How to create a function?
	Summary
	Q & A

