
1

Automated Performance-Tracking of LLVM-
Generated Code

Kristof Beyls
FOSDEM, January 2016

2

§  Most of us care about Top-Of-Trunk always being in a releasable state.
For all/majority of platforms supported.
Or in other words – ToT always at least as good as the last release.

§  Lots of different quality aspects – correctness, speed of generated code, size of
generated code, compilation speed, …

§  This talk is on how to get to a well-working continuous integration setup to monitor
the speed of generated code:

§  Signalling issues quickly and reliably
§  With low false positive and low false negative rate
§  In a way that is actionable
§  Requiring as little as possible human effort
§  Enabling a culture of acting on deltas

Why bother?

3

§  Analysis of noise observed on a big.LITTLE Cortex®-A57/Cortex®-A53
system.

§  Improvements made to test-suite and LNT based on those insights.
§  Other improvements made in the last year?
§  Further ideas.
§  Conclusions

Overview

4

§  Juno ARM development board
§  4x Cortex-A53 (in-order)

2x Cortex-A57 (out-of-order)
Can run both AArch64 and AArch32.

§  We don’t like noisy results
§  We don’t like late results
§  We don’t like false positives/negatives.
§  We like actionable information.

§  Not everyone has access to this platform – how can I

make results more meaningful for everyone?

I want to set up a low-noise perf tracking bot. What do I do?

5

§  Take the programs in the test-suite & run them a lot of times on both cores.
§  Most are relatively low-noise:

Q1: How much relative noise is there when running the same
binary multiple times?

6

Q2. Is the noise typically consistent between cores?

§  For low-noise ones: Yes. D’uh!
§  For high-noise ones: No.

7

Q3. Is noise typically distributed in the same way?

Normal

Skewed Normal

Bimodal

Skewed bimodal

Quad-modal?

§  No!

8

Q4. Is there a difference between both cores?

§  Yes!

9

§  Most programs have noise less than 1% relative standard deviation (RSD).
§  10% or more of the programs have more than 1% RSD noise.
§  The noise is inherent to the nature of programs running on contemporary cores

§  Many runs of the same program shows some programs on some cores are noisy, others are not.
I.e. the noise comes from a combination of address space layout randomization (ASLR) and micro-
architectural effects.

§  There isn’t always a single number accurately describing the performance of a program.

§  Noise distribution isn’t necessarily consistent across (program, core).
We shouldn’t make assumptions on distribution of noise when analyzing performance
numbers.

Summary of insights on the nature of noise observed

10

§  Analysis of noise observed on a big.LITTLE Cortex®-A57/Cortex®-A53 system.
§  Improvements made to test-suite and LNT based on those insights.
§  Other improvements made in the last year?
§  Further ideas.
§  Conclusions

Overview

11

i1. Show multiple sample points by default.

12

i1. Is “min”/”max” the right aggregation function?

13

i1. Is “min”/”max” the right aggregation function?

14

§  Which performance deltas are real, which ones are noise?

i2. Sparklines on daily report page

15

i2. Sparklines on daily report page

Real

Noise

Hmmm…

§  Which performance deltas are real, which ones are noise?

16

§  Out of the 300 programs in the test-suite; 20-ish run for less than 10ms. Do they do
enough work for the hardware to have a chance to produce low-noise data?

i3. Remove very short-running programs (< 10ms) in
benchmark mode?

6 programs not having loops at all

REMOVED

10 programs which do very little
work
REMOVED

3 programs where code seems
optimized away completely
KEPT

SingleSource/UnitTests/Vector/constpool
SingleSource/UnitTests/Vector/simple
SingleSource/UnitTests/Vector/AArch64/
aarch64_neon_intrinsics
SingleSource/UnitTests/2005-07-15-Bitfield-ABI
SingleSource/UnitTests/2006-01-23-UnionInit
SingleSource/UnitTests/2007-04-10-BitfieldTest

MultiSource/Benchmarks/Prolangs-C/lloader
MultiSource/Benchmarks/McCat/15-trie
MultiSource/Benchmarks/Prolangs-C/cdecl
MultiSource/Benchmarks/MiBench/office-
stringsearch
MultiSource/Benchmarks/MiBench/telecom-adpcm
SingleSource/Benchmarks/Stanford/IntMM
SingleSource/Regression/C/matrixTranspose
SingleSource/Regression/C/sumarray2d
SingleSource/Regression/C/test_indvars:
SingleSource/UnitTests/SignlessTypes:

SingleSource/Benchmarks/Misc/lowercase
SingleSource/Benchmarks/Shootout/objinst
SingleSource/Benchmarks/Shootout-C++/objinst

17

§  27 out of 300 programs cover 50% of total run-time.
§  Many of those are in Polybench sub-suite. They spent all their time

printf-ing a large matrix.
Renato fixed that. Results in 5% faster test-suite, less noise.

i4. Can the test-suite produce useful benchmark results faster?

18

§  In a fully parallel build,
some compile jobs will land on the big&fast core,
some compile jobs will land on the little&slower core.

§  –exclude-stat-from-submission.
To avoid submitting compile time numbers on our big.LITTLE board.
Also should be used for other systems where one kind of metric just is unstable.

i5. Compile time is expected to be noisy when using all cores
on a heterogenous big.LITTLE board

19

§  Make it easier to create regression tests for new functionality:
§  Transformed database regression tests to create DB from SQL statements rather than binary dump.

Which in itself makes adding regression tests for new DB-based functionality straightforward.
§  Made checking of webui output in regression test possible.
§  Made running regression tests possible against both sqlite and postgres.

§  Created an initial developer’s guide

§  The combination of the above raises LNT development practices to roughly the same
level as other LLVM sub-projects.
There are still many missing tests for existing functionality; but it shouldn’t be too hard
to add them bit by bit now.

i6. Making it easier to develop LNT

20

§  LNT
§  Show all sample points by default.

Indicating min/max may not be the best aggregation function.
§  Sparklines – with all sample points – on daily report page.
§  –exclude-stat-from-submission.

Allowing to not submit metrics that are known to be noisy.

§  test-suite
§  Remove very short-running programs from benchmark mode
§  Renato fixed most polybench benchmarks spending all their time in printf.

§  llvm-juno-lnt-perf__LNT-AArch64-A53-O3__clang_DEV__aarch64:39
§  make use Cortex-A53 rather than Cortex-A57.
§  Keep ASLR enabled.

i7. Summary of improvements made based on analysis

21

§  Analysis of noise observed on a big.LITTLE Cortex®-A57/Cortex®-A53
system.

§  Improvements made to test-suite and LNT based on those insights.
§  Other improvements made in the last year?
§  Further ideas.
§  Conclusions

Overview

22

O1. Recording hash of generated binary

23

O1. Recording hash of generated binary

Real

Noise

Hmmm…
Noise!

24

§  Improving signal-to-noise and actionability (by Chris Matthews):
§  Better analysis algorithm to detect regressions – working, probably can be improved further.
§  Performance change tracking ui & db – in development. Goal is to make the data LNT produces

more actionable.
§  Llvm-bisect tool – stores clang binaries built by bots in a cache. Scripts can fetch these builds to

more quickly bisect issues.

§  New metrics
§  score, mem_bytes. bigger-is-better

§  Stability fixes to the server llvm.org/perf
§  REST and Ajax interface; offline computation in the webui; general bug fixes.

§  Various ui polishings

O2. A few other major improvements

25

§  Analysis of noise observed on a big.LITTLE Cortex®-A57/Cortex®-A53
system.

§  Improvements made to test-suite and LNT based on those insights.
§  Other improvements made in the last year?
§  Further ideas.
§  Conclusions

Overview

26

§  Results can be publicly shared – for many commercial benchmarks, T&C don’t allow
that.

§  Commercial benchmarks sometimes run for a long time; we want quick feedback.
§  Should the test-suite in benchmarking mode be a set of micro-benchmark-ish-things?

See Chandler’s cppcon2015 presentation

§  Is the test-suite representative enough of the “real world”?
§  Not sure how to measure this well…

F1. What is the goal of running the test-suite as a benchmark?

27

§  Total runtime on Cortex-A53: 5769.33s
§  If we’d adapt the programs to run more quickly:

at most 100 ms = 26.94s (speedup: 214x)
at most 1 s = 232.02s (speedup: 24x)

F1. Can the test-suite produce useful benchmark results faster?

28

§  No-one(?) has access to all the platforms LLVM supports.
§  Does the test-suite provide good enough data on performance on a platform you don't have access

to, but for which public performance tracking bots give you feedback?
§  For correctness testing, we have quite a few different public bots on different platforms.
§  For performance tracking we only have few so far.

§  Is the test-suite representative enough?
§  For what kind of programs/areas/segments?

§  Continuous deployment of ToT LNT/test-suite?
§  Some public buildbots use ToT LNT.
§  But the server at llvm.org/perf isn’t auto-updated.

F1. Public/community performance tracking vs in-house tracking

29

F2. Less effort to go from perf delta to understanding what
caused it

30

§  Which commit?
§  Could we integrate some kind of bisecting service on perf-tracking builders?
§  Can it be built on top of the bisecting script and cache available now?
§  Building on top of rerun functionality in LNT; if needed using cross-built binaries for slow perf

tracking bots?
r248018 | conghou | 2015-09-18 19:19:40 +0100 (Fri, 18 Sep 2015) | 7 lines

Scaling up values in ARMBaseInstrInfo::isProfitableToIfCvt() before they are
scaled by a probability to avoid precision issue.

§  Exactly what kind of code change caused the delta?
§  Could we store performance traces on the side, and get LNT to do some kind of analysis to

highlight the “hot” differences?
§  Without needing access to the hardware where the performance change was seen?

F2. OK – 20% regression. What caused it?

31

b53 (r247972)

 ...
 5.15 │ ldrb.w r8, [ip, r5, lsl #1]
 9.05 │ cmp.w r8, #0
 3.55 │ beq.n 10d20
 5.29 │ ldrb r4, [r6, r5]
 1.67 │ eor.w lr, lr, r4
 4.94 │ strb.w lr, [r0, r1]
 1.88 │ adds r5, #1
 9.61 │ uxth r4, r5
 1.32 │ cmp r4, r2
 10.65 │ bne.n 10d0c
 ...

F2. Show annotated assembly diffs – e.g linux perf output

b54 (r248094)

...
 4.93 │ ldrb.w r8, [ip, r5, lsl #1]
 5.96 │ cmp.w r8, #0
 3.32 │ ittt ne
 3.32 │ ldrbne r4, [r6, r5]
 4.35 │ eorne. lr, lr, r4
 5.47 │ strbne lr, [r0, r1]
 8.98 │ adds r5, #1
 8.64 │ uxth r4, r5
 8.35 │ cmp r4, r2
 6.15 │ bne.n 10d0c
 ...

32

b53 (r247972)

 ...
 5.15 │ ldrb.w r8, [ip, r5, lsl #1]
 9.05 │ cmp.w r8, #0
 3.55 │ beq.n 10d20
 5.29 │ ldrb r4, [r6, r5]
 1.67 │ eor.w lr, lr, r4
 4.94 │ strb.w lr, [r0, r1]
 1.88 │ adds r5, #1
 9.61 │ uxth r4, r5
 1.32 │ cmp r4, r2
 10.65 │ bne.n 10d0c
 ...

F2. Show annotated assembly diffs – e.g linux perf output

b54 (r248094)

...
 4.93 │ ldrb.w r8, [ip, r5, lsl #1]
 5.96 │ cmp.w r8, #0
 3.32 │ ittt ne
 3.32 │ ldrbne r4, [r6, r5]
 4.35 │ eorne. lr, lr, r4
 5.47 │ strbne lr, [r0, r1]
 8.98 │ adds r5, #1
 8.64 │ uxth r4, r5
 8.35 │ cmp r4, r2
 6.15 │ bne.n 10d0c
 ...

33

b53 (r247972)

 ...
 5.15 │ ldrb.w r8, [ip, r5, lsl #1]
 9.05 │ cmp.w r8, #0
 3.55 │ beq.n 10d20
 5.29 │ ldrb r4, [r6, r5]
 1.67 │ eor.w lr, lr, r4
 4.94 │ strb.w lr, [r0, r1]
 1.88 │ adds r5, #1
 9.61 │ uxth r4, r5
 1.32 │ cmp r4, r2
 10.65 │ bne.n 10d0c
 ...

F2. Show annotated assembly diffs – e.g linux perf output

b54 (r248094)

...
 4.93 │ ldrb.w r8, [ip, r5, lsl #1]
 5.96 │ cmp.w r8, #0
 3.32 │ ittt ne
 3.32 │ ldrbne r4, [r6, r5]
 4.35 │ eorne. lr, lr, r4
 5.47 │ strbne lr, [r0, r1]
 8.98 │ adds r5, #1
 8.64 │ uxth r4, r5
 8.35 │ cmp r4, r2
 6.15 │ bne.n 10d0c
 ...

Danger of re-inventing performance analysis tools in LNT’s web-ui?

34

F3. Driving the test-suite using cmake & lit

§  Instead of the current Makefiles.
§  Main goal is to make it easy to plug in other benchmark suites under “Externals”

§  … and have all extra features to build and run the test-suite work automatically for every
benchmark suite under externals too. Examples:

§  Recording hash of binary
§  Running the program under perf or other profiling tools
§  Measuring code size
§  … any other improvement to measuring program build or execution we can think of in the future.

§  Work in progress

35

§  Analysis of noise observed on a big.LITTLE Cortex®-A57/Cortex®-A53 system.
§  Improvements made to test-suite and LNT based on those insights.
§  Other improvements made in the last year?
§  Further ideas.
§  Conclusions

Overview

36

§  Some really good progress this year:

§  Signalling issues quickly and reliably é
§  With low false positive and low false negative rate é
§  In a way that is actionable ì
§  Requiring as little as possible human effort é
§  Enabling a culture of acting on deltas è

§  Consider using LNT as your performance tracking infrastructure for down-stream
changes too. It’s not perfect yet, but amongst the best available.

Conclusion

