The road to liberating software

at the lower levels

-

Paul Kocialkowski

paulk@replicant.us
Y
000

c Saturday January 30t 2015
Replicant d Y

FOSDEM::

— Brussels 30 & 31 January

Devices and hardware components

Scope of devices:
e Traditional, full computers (x86)
e Embedded and mobile devices (ARM, MIPS, etc)

Devices and hardware components

Scope of devices:
e Traditional, full computers (x86)
e Embedded and mobile devices (ARM, MIPS, etc)

Different kinds of hardware, chips:
e Main processor
e Auxiliary processors (modem, VPU, DSP, GPU)
e Controllers (xHCI, EC)
e Peripherals (Wi-Fi, bluetooth, USB input devices, etc)

Lower levels of software

Software at the lower levels ?
o Communicating directly with the hardware (registers)
e Hardware access via PIO, MMIO
e Direct access or through controllers

Lower levels of software

Software at the lower levels ?
o Communicating directly with the hardware (registers)
e Hardware access via PIO, MMIO
e Direct access or through controllers

Low-level software:
e Drivers
o Bootup software (BIOS, hardware initialization, bootloader)

e Firmwares

Lower levels of software

JDIM

PJP601

BT ———

Close to the hardware!

Liberating software at the lower levels

Why bother liberating the lower levels?

Distant from the Ul and users

Not likely to evolve 'it just works’

Proprietary software gets the job done

Also often allows running a free system
(drivers, bootup, firmwares)

Liberating software at the lower levels

Why bother liberating the lower levels?

Distant from the Ul and users

Not likely to evolve 'it just works’

Proprietary software gets the job done

Also often allows running a free system
(drivers, bootup, firmwares)

Because free software matters!

Liberating software at the lower levels

Because free software matters!
e Knowledge of how the hardware works
e Being in control instead of being controlled
e Ability to adapt to one's needs

e Matter of trust, privacy and security

Liberating software at the lower levels

Because free software matters!
e Knowledge of how the hardware works
e Being in control instead of being controlled
e Ability to adapt to one's needs

e Matter of trust, privacy and security

Technical reasons:
e Changes in APls, interfaces
e Bug fixes, improvements

e Flexibility, hacking, unintended uses

Liberating the software

Liberating the software:

e Manufacturer’s positions
Economical interest
Copyright (IP blocks, patents)
Copyleft (kernel, bootloaders)
Quality, maintainability (reference)

Reverse engineering

e Ressources and time needed

Long-term interest, obsolescence

Technical possibilities, recurrent limitations

Recurrent limitation when liberating software

Recurrent limitations:

Technical knowledge, adapted tools
Legal constraints (reverse engineering)
Hardware documentation, schematics, etc

Ability to replace software:
Read-only memory, secret interfaces, external access

Ability to run our own code: signatures

Ability to debug code execution

Example: Optimus Black

Optimus Black: overview

Mainstream LG smartphone from 2011
OMAP3630 platform

Technical documentation (schematics):
EN_LG-P970_SVC_ENG_110415.pdf
U-Boot and X-Loader bootloaders
reference source code released by LG

Community Android support
(CyanogenMod)

Optimus Black: signature checks

e HS and GP versions of OMAP platforms
o CONTROL_STATUS (0x480022f0) register:

Bits Field Name Description Type Reset
31:11 RESERVED Reserved field R 0x-
10:8 DEVICETYPE Device type value sampled at power_on reset R 0x-
0b011 : GP device
Other values : Reserved
7:6 RESERVED Reserved field R 0x-
5:0 SYSBOOT Sys.Boat pin values sampled at power_on reset R 0x-

$ devmem 0x480022f0 16
0x0325

e OMAP GP version: no signature checks

Possible to port a free bootloader (U-Boot)!

Optimus Black: code execution

Loading code to the device:
e Boot order: SYS_BOOT pins and resistors
e Memory or peripheral priority: SYS_.BOOT|5]
e Default: SYS_.BOOTI[5]=0 (MMC2 over USB)

OIAAZ'L
84
aM
[T1]
L

Table 26-3. Memory Preferred Booting Configuration Pins After POR

sys_boot [4:0] Booting Sequence When SYS.BOOT[5] = 0
Memory Preferred Booting Order

First Second Third Fourth Fifth

0b00101 MmMmC2 usB

Optimus Black: code execution

Loading code to the device:
e Pull-down on SYS_BOOT/[5]: R323
e Removed R323: SYS_BOOT[5]=1 (USB over MMC2)

om SIS -
62 | cest o | con oo [g o
AEREINE S5 |L8os
HIE] 28| (o 5 —
oo gl C835
©863 | L811 2l
cas0 | | ceez R203
R322 | Rats &=
3& allalal ol alzlzlz NEEEEH &S
wol SIEI 208858828882 8EEE O [om
H 2lz olz cw| (3 -
©1818) ca96 | E[€| c5001 |FE| o e e
N e
I
3 [
2
3
g
5
B 2
3 - -]

Table 26-4. Peripheral Preferred Booting Configuration Pins After POR

sys_boot [4:0] Booting Sequence When SYS.BOOT[5] = 1

Peripheral Preferred Booting Order
First Second Third
0b00101 usB MMC2

Fourth Fifth

Optimus Black: debugging

Basic debugging feedback:
e Serial console: UART3

w
o
=%

=

D-

GNo| 3 | EI 2] vec
seLfo] | 4] [12] sepm
HsD1-| 5 | [10 | HsD3+
HsD1+| 6 | I_I [[o | Hsp3-

[

=

S
+2Z0SH [|

=2
7}
o
R
|
Pin Assign

Figure 2.

\ments (Top Through View)

Optimus Black: debugging

e UART Tx exposed from DP3T switch

e Connectors on the device

ViTD_alloc=y vran=16H onapfb. vran=0:5H 1pj el gauge
battery_charging] Value of Battery ol ADC 743 o
[twl4030_init_battery_charging] Battery no. w14030_power_off(
[tl4030_power_off] PNRANAZ was set to high jitter mode

Texas Instruments X-Loader 1.41 (Jul 19 2014 - 23:45:49)

Free software for a free society!

Starting 05 Bootloader fron NAND ...
Could not read bootloader!

X-Loader

a

Upstream U-Boot support!

Example: Chromebook C201

Chromebook C201: overview

Asus Chromebook laptop from 2015
RK3288 platform

No documentation or schematics
No signature checks

Coreboot support (upstream)

Linux support (downstream)

Free Embedded Controller firmware

Reflash all the things!

Chromebook C201: code execution (SoC)

e Bootup software on SPI flash
e Hardware-protected part of the flash

e The screw!

cs#
MISO
WPH#
GND

Chromebook C201: code execution (EC)

e BOOTO pin (pull-down to reflash from UART)
e Finding the pull-up resistor

~BOOTO

Chromebook C201: debugging

e Serial console: UART (both SoC and EC)
e Exported on Servo header

e Documented pinout

EIZSB

1
’—Illlllll ELELEL HRERL=

Cyuutnit it
goommui R
PUP28G3
o

Example: G505s KB9012 Embedded
Controller

G505s KB9012 Embedded Controller: overview

Lenovo laptop from 2013
AMD fam15h platform
Technical documentation (schematics)

Coreboot support

Embedded Controller:
e KB9012 EC from ENE
e Technical documentation (datasheet)
e 8051 CPU with controllers

e Internal storage

Gb505s KB9012 Embedded Controller: code execution

According to the datasheet:
e LPC interface for reflashing
o External EDI (SPI-like) interface, exported on keyboard pins

Flashrom support (pending review)!

G505s KB9012 Embedded Controller: debugging

e Serial console: UART
e EC debug interface, PCl-e pins

100_0402_1% = b
RB05 Lzl bl
1 2 43
> EC.TX AN

For EC Debug gea EoTX B] 2 . ek
100_0402 1% 53 | o
[OTES_,

ME@

swvawg 3
<303 ECTX
<;w> EC X

For EC to detect “
debug card insert. i o2 040054

- RS

Replacements installation for end users

Once a working free software replacement is ready:
e Easiness of the installation process
e Required skills for the operation

e Risk of bricking the device

What we can do to reduce the pain:
e Providing clear and complete documentation
e Clearly mentioning the required skills

e Encouraging local organizations: Free software user groups,
Hackerspaces

	Example: Optimus Black
	Example: Chromebook C201
	Example: G505s KB9012 Embedded Controller

