
The road to liberating software

at the lower levels

Paul Kocialkowski
paulk@replicant.us

Saturday January 30th 2015



Devices and hardware components

Scope of devices:

• Traditional, full computers (x86)

• Embedded and mobile devices (ARM, MIPS, etc)

Different kinds of hardware, chips:

• Main processor

• Auxiliary processors (modem, VPU, DSP, GPU)

• Controllers (xHCI, EC)

• Peripherals (Wi-Fi, bluetooth, USB input devices, etc)



Devices and hardware components

Scope of devices:

• Traditional, full computers (x86)

• Embedded and mobile devices (ARM, MIPS, etc)

Different kinds of hardware, chips:

• Main processor

• Auxiliary processors (modem, VPU, DSP, GPU)

• Controllers (xHCI, EC)

• Peripherals (Wi-Fi, bluetooth, USB input devices, etc)



Lower levels of software

Software at the lower levels ?

• Communicating directly with the hardware (registers)

• Hardware access via PIO, MMIO

• Direct access or through controllers

Low-level software:

• Drivers

• Bootup software (BIOS, hardware initialization, bootloader)

• Firmwares



Lower levels of software

Software at the lower levels ?

• Communicating directly with the hardware (registers)

• Hardware access via PIO, MMIO

• Direct access or through controllers

Low-level software:

• Drivers

• Bootup software (BIOS, hardware initialization, bootloader)

• Firmwares



Lower levels of software

Close to the hardware!



Liberating software at the lower levels

Why bother liberating the lower levels?

• Distant from the UI and users

• Not likely to evolve ’it just works’

• Proprietary software gets the job done

• Also often allows running a free system
(drivers, bootup, firmwares)

Because free software matters!



Liberating software at the lower levels

Why bother liberating the lower levels?

• Distant from the UI and users

• Not likely to evolve ’it just works’

• Proprietary software gets the job done

• Also often allows running a free system
(drivers, bootup, firmwares)

Because free software matters!



Liberating software at the lower levels

Because free software matters!

• Knowledge of how the hardware works

• Being in control instead of being controlled

• Ability to adapt to one’s needs

• Matter of trust, privacy and security

Technical reasons:

• Changes in APIs, interfaces

• Bug fixes, improvements

• Flexibility, hacking, unintended uses



Liberating software at the lower levels

Because free software matters!

• Knowledge of how the hardware works

• Being in control instead of being controlled

• Ability to adapt to one’s needs

• Matter of trust, privacy and security

Technical reasons:

• Changes in APIs, interfaces

• Bug fixes, improvements

• Flexibility, hacking, unintended uses



Liberating the software

Liberating the software:

• Manufacturer’s positions
• Economical interest
• Copyright (IP blocks, patents)
• Copyleft (kernel, bootloaders)
• Quality, maintainability (reference)

• Reverse engineering

• Ressources and time needed

• Long-term interest, obsolescence

• Technical possibilities, recurrent limitations



Recurrent limitation when liberating software

Recurrent limitations:

• Technical knowledge, adapted tools

• Legal constraints (reverse engineering)

• Hardware documentation, schematics, etc

• Ability to replace software:
Read-only memory, secret interfaces, external access

• Ability to run our own code: signatures

• Ability to debug code execution



Example: Optimus Black



Optimus Black: overview

• Mainstream LG smartphone from 2011

• OMAP3630 platform

• Technical documentation (schematics):
EN LG-P970 SVC ENG 110415.pdf

• U-Boot and X-Loader bootloaders
reference source code released by LG

• Community Android support
(CyanogenMod)



Optimus Black: signature checks

• HS and GP versions of OMAP platforms

• CONTROL STATUS (0x480022f0) register:

$ devmem 0x480022f0 16

0x0325

• OMAP GP version: no signature checks

Possible to port a free bootloader (U-Boot)!



Optimus Black: code execution

Loading code to the device:

• Boot order: SYS BOOT pins and resistors

• Memory or peripheral priority: SYS BOOT[5]

• Default: SYS BOOT[5]=0 (MMC2 over USB)



Optimus Black: code execution

Loading code to the device:

• Pull-down on SYS BOOT[5]: R323

• Removed R323: SYS BOOT[5]=1 (USB over MMC2)



Optimus Black: debugging

Basic debugging feedback:
• Serial console: UART3
• Exposed from: dummy interface, dp3t switch, USB



Optimus Black: debugging

• UART Tx exposed from DP3T switch

• Connectors on the device

Upstream U-Boot support!



Example: Chromebook C201



Chromebook C201: overview

• Asus Chromebook laptop from 2015

• RK3288 platform

• No documentation or schematics

• No signature checks

• Coreboot support (upstream)

• Linux support (downstream)

• Free Embedded Controller firmware

Reflash all the things!



Chromebook C201: code execution (SoC)

• Bootup software on SPI flash

• Hardware-protected part of the flash

• The screw!



Chromebook C201: code execution (EC)

• BOOT0 pin (pull-down to reflash from UART)

• Finding the pull-up resistor



Chromebook C201: debugging

• Serial console: UART (both SoC and EC)

• Exported on Servo header

• Documented pinout



Example: G505s KB9012 Embedded

Controller



G505s KB9012 Embedded Controller: overview

• Lenovo laptop from 2013

• AMD fam15h platform

• Technical documentation (schematics)

• Coreboot support

Embedded Controller:

• KB9012 EC from ENE

• Technical documentation (datasheet)

• 8051 CPU with controllers

• Internal storage



G505s KB9012 Embedded Controller: code execution

According to the datasheet:

• LPC interface for reflashing

• External EDI (SPI-like) interface, exported on keyboard pins

Flashrom support (pending review)!



G505s KB9012 Embedded Controller: debugging

• Serial console: UART

• EC debug interface, PCI-e pins



Replacements installation for end users

Once a working free software replacement is ready:

• Easiness of the installation process

• Required skills for the operation

• Risk of bricking the device

What we can do to reduce the pain:

• Providing clear and complete documentation

• Clearly mentioning the required skills

• Encouraging local organizations: Free software user groups,
Hackerspaces


	Example: Optimus Black
	Example: Chromebook C201
	Example: G505s KB9012 Embedded Controller

