LGSL: Numerical algorithms for Lua
A Lua-ish interface to the GNU Scientific Library

Lesley De Cruz, Francesco Abbate, Benjamin von Ardenne

Lua devroom @ FOSDEM
ULB, Brussels, January 30, 2016

What is LGSL?

The LGSL module provides a friendly, Lua-ish interface to the
GNU Scientific Library (GSL).

It is based on the numerical modules of GSL Shell.

LGSL uses FFI bindings to the functions provided by the GSL
shared library.

LGSL is a pure Lua(JIT) module: it requires no compilation (if
the GSL library is present).

Thanks to LuaJIT and BLAS, LGSL is blazingly fast*.

What is LGSL?

LGSL uses FFI metatypes to turn GSL primitives into
featureful, garbage-collected Lua objects. For example:

m Matrices can be printed, inverted, multiplied, etc.

local matrix = require("lgsl.matrix")
local ml = matrix.unit (2) - 1

local m2 = matrix.inv(ml)

print (mlxm2)

-— [1 0]

-— [0 1]

m Mix matrices and scalars, both complex and real.
print (ml1x11)
== [0 0-1]
== [0=1 0]
m Can be passed as arguments to GSL C functions such as

void gsl_matrix_set_identity (gsl_matrix * m);

What is LGSL?

LGSL uses FFI metatypes to turn GSL primitives into
featureful, garbage-collected Lua objects. For example:

m Complex number operators are fully supported, but have
their own math library functions in the 1gs1.complex
module.

local complex = require("lgsl.complex")
print ((1+11)/(1-11))

== Q<+l

print (1i711)

-— 0.20787957635076+01

print (complex.exp (lixmath.pi/4))

-— 0.70710678118655+0.707106781186551

Why use the GNU Scientific Library?

GNU Scientific Library
Reference Manual

m Well-written, ANSI C compliant code

m Well-tested by a comprehensive test
suite and years of field-testing

m Well-documented, with an extensive
Reference Manual (in print)

m Free as in Freedom (GPL): freely
share your applications with others

Third edition, f rsion

According to the GSL website: “The interface was designed to
be simple to link into very high-level languages, such as GNU
Guile or Python.”

GNU Scientific Library: contents

Complex Numbers

Special Functions
Permutations

BLAS Support
Eigensystems

Quadrature

Quasi-Random Sequences
Statistics

N-Tuples

Simulated Annealing
Interpolation

Chebyshev Approximation
Discrete Hankel Transforms
Minimization

Physical Constants
Discrete Wavelet Transforms
Running Statistics

Roots of Polynomials
Vectors and Matrices
Sorting

Linear Algebra

Fast Fourier Transforms
Random Numbers
Random Distributions
Histograms

Monte Carlo Integration
Differential Equations
Numerical Differentiation
Series Acceleration
Root-Finding
Least-Squares Fitting
|IEEE Floating-Point
Basis splines

Sparse Matrices and Linear Algebra

GNU Scientific Library: contents

LGSL implementation: Lua-ish interface / bare FFI bindings.

Complex Numbers
Special Functions
Permutations

BLAS Support
Eigensystems
Quadrature
Quasi-Random Sequences
Statistics

N-Tuples

Simulated Annealing
Interpolation

Chebyshev Approximation
Discrete Hankel Transforms
Minimization

Physical Constants
Discrete Wavelet Transforms
Running Statistics

Roots of Polynomials
Vectors and Matrices
Sorting

Linear Algebra

Fast Fourier Transforms
Random Numbers
Random Distributions
Histograms

Monte Carlo Integration
Differential Equations
Numerical Differentiation
Series Acceleration
Root-Finding (under review)
Least-Squares Fitting

|IEEE Floating-Point

Basis splines

Sparse Matrices and Linear Algebra

Why use LGSL? Example: Monte Carlo integration

C implementation with GSL:

#include <gsl/gsl_rng.h>
#include <gsl/gsl_monte_vegas.h>
#include <stdlib.h>
#include <gsl/gsl_math.h>
int main(void) {

double res, err;

int dim = 9;

double x1(9] = { 0.,0.,0.,0.,0.,0.,0.,0.,0.};
double xu(9] = { 2.,2.,2.,2.,2.,2.,2.,2.,2.};
gsl_monte_function G = { &f, dim, 0 };
size_t calls = le6*dim;

gsl_rng_env_setup();
gsl_rng *r = gsl_rng_alloc (gsl_rng_taus2);
gsl_rng_set (r, 30776);

gsl_monte_vegas_state *s = gsl_monte_vegas_alloc (dim);

gsl_monte_vegas_integrate (&G, x1, xu, dim, le4, r, s, &res, &err)

int i=0;

do {
gsl_monte_vegas_integrate (&G, x1, xu, dim, calls/5, r, s, &res, &err);
i=i+1;

}

while (fabs (gsl_monte_vegas_chisqg(s) - 1.0) > 0.5);

printf ("Result = % .10f\n", result);
gsl_monte_vegas_free(s);
gsl_rng_free(r);

return 0;

Why use LGSL? Example: Monte Carlo integration

Lua implementation with LGSL:

local vegas = require("lgsl.vegas")
local matrix = require("lgsl.matrix")
math.randomseed (30776)

local n = 9

local calls = le6x*n

local a = matrix.new(n, 1)

local b = a + 2

local res = vegas.integ(f,a,b,calls)
print ("Result = ", res.result)

* But what about callbacks? (Lua — C — Lua)

Thanks to the LuaJIT FFI, a C function can take a Lua
function as a callback argument.

Unlike other calls to C functions via the LuaJIT FFlI, these
callbacks cannot be inlined/optimized.

Simply using FFI bindings for e.g. quadrature algorithms, ODE
integrators, root finders... would carry a very high performance
penalty!

Solution: re-implement the algorithms in pure Lua.

* But what about callbacks? (Lua — C — Lua)

Functions reimplemented in pure Lua:
m Quadrature
m Sorting
m Monte Carlo Integration
m Differential Equations
m Root-Finding (under review)

Re-implementing numerical routines in pure Lua

A naive implementation is already very fast!

Keeping in mind the guidelines (http://wiki.luajit.org)
m Locals, locals everywhere
m Cache often-used functions (but not FFI C functions)
m Minimize the number of live variables
m Prefer numeric for over pairs/ipairs
m Avoid unbiased branches
m Avoid nested loops or loops with low iteration counts

However, we would like to compete with C.

The last guideline (no short loops) is hard to combine with
flexible code.

http://wiki.luajit.org

Re-implementing numerical routines in pure Lua

To speed things up even more:

m Unroll loops with low iteration counts.
LGSL uses Rici Lake’s template parser for automatic loop

unrolling. Example:
—-— k1 step of the 4th order Runge—-Kutta

—-— ODE integration algorithm
for i = 0, N-1 do

y_$(1) = y_$(1) + h / 6 » k_$ (i)
ytmp_S$ (1) = y0_S$(i) + 0.5 » h x k_S$(1)
end

For very large ODE systems: odevec (under development)
m Use FFl arrays instead of Lua tables.

Visualisation

LGSL and graph-toolkit play well together.

X X X X
Non-linear fit / A * exp(a t) sin(w t) Linear Fit ‘Wave function density

Lotka-Volterra ODE integration

B ﬂ\ \) [V \
| niE
ot 7
; /1 \ N
Bty \ o
\k&// A |

Visualisation

LGSL and graph-toolkit play well together.

X

ODE integration example.

X

Poincare section

FFT Power Spectrum

X

Lewy's C curve

Installation (on Linux, e.g. Debian-derived)
LuadIT —X

> git clone http://luajit.org/git/luajit-2.0.git
> cd luajit-2.0 && make && sudo make install

LuaRocks

> wget
http://luarocks.org/releases/luarocks-2.3.0.tar.gz
> tar xvzf luarocks-2.3.0.tar.gz

> cd luarocks-2.3.0

> ./configure && sudo make bootstrap

Recommended: graph-toolkit

> sudo apt—-get install libagg—-dev libfreetype6-dev
libxll-dev
> luarocks install --server=http://luarocks.org/dev

graph-toolkit

http://luajit.org/git/luajit-2.0.git
http://luarocks.org/releases/luarocks-2.3.0.tar.gz

Installation (on Linux, e.g. Debian-derived)

GSL and LGSL

> sudo apt—get install 1libgsl0ldbl
> luarocks install 1lgsl

Documentation: http://ladc.github.io/1gsl/
GitHub: http://www.github.com/ladc/1lgsl/

Pull requests welcome!

http://ladc.github.io/lgsl/
http://www.github.com/ladc/lgsl/

	LGSL: A Lua-ish interface to the GNU Scientific Library
	Optimizing for speed
	Visualisation
	Installing

