

Junit-contracts: A Contract Testing Tool

Claude N. Warren, Jr.

FOSDEM '16

January 30-31, 2016

Brussels, Belgium

Who Is Claude Warren?

●claude@xenei.com
●Apache Jena Project Management Committee
Member and Committer.
●https://github.com/Claudenw
●Playing with java since version 0.8
●Developer/Architect > 25 years experience
●Currently employed by IBM (Galway, IE)
●Formerly employed by Digital Enterprise Research Institute (Galway, IE), National
Renewable Energy Laboratory (Golden, CO, USA)
●Founding member of the Denver Area Mad Scientists Club
●Winner of the first Critter Crunch (Robotics Competition)
●Frustrated Musician
●Author of Junit Contract test extension.

What is Contract Testing

● A Java interface outlines a contract.

What is Contract Testing

● A Java interface outlines a contract.

● The contract is further refined and defined in other documentation.

What is Contract Testing

● A Java interface outlines a contract.

● The contract is further refined and defined in other documentation.

● Contract testing ensures that all testable facets of the contract are tested.

What is Contract Testing

● A Java interface outlines a contract.

● The contract is further refined and defined in other documentation.

● Contract testing ensures that all testable facets of the contract are tested.

● A jUnit extension written by Claude Warren and found at
https://github.com/Claudenw/junit-contracts

Why Contract Testing

● Verify that implementations are correct.

– Support can ask for proof of correctness of 2nd or 3rd party
implementations.

– Internal development teams can ensure that they are correctly
implementing the interface long before integration test.

● Apply DRY (Don't Repeat Yourself) principles to interface testing. One test
covers all implementations.

– In Java a class can have multiple interfaces but only one parent, so
consistent testing across interface implementations is difficult.

Who Benefits

● SPI/API Implementers – Insure full implementation.

● SPI/API Definers – Insure that other teams correctly implement contracts.

● QA Test – can easily validate that contracts are correctly implemented.

● QA Test Managers – can easily determine which contract tests need to be
developed or implemented.

Problem

public interface Foo {
 // Add an object. Implementations must log action.
 public void add(Object x);
 Public boolean contains(Object x);
 // register a logger to listen. Multiple calls ok.
 public void register(Logger log);
}

Problem

public interface Foo {
 // Add an object. Implementations must log action.
 public void add(Object x);
 Public boolean contains(Object x);
 // register a logger to listen. Multiple calls ok.
 public void register(Logger log);
}

Problem

public interface Foo {
 // Add an object. Implementations must log action.
 public void add(Object x);
 Public boolean contains(Object x);
 // register a logger to listen. Multiple calls ok.
 public void register(Logger log);
}

How do you verify that all implementations
adhere to the logging requirement?

Problem

public interface Foo {
 // Add an object. Implementations must log action.
 public void add(Object x);
 Public boolean contains(Object x);
 // register a logger to listen. Multiple calls ok.
 public void register(Logger log);
}

How do you verify that all implementations
adhere to the logging requirement?

How do you find all the implementations?

Solution

● Define a “producer” that provides the instance of the interface.

Solution

● Define a “producer” that provides the instance of the interface.

● Define a concrete contract test that tests the instance returned by a “producer”

Solution

● Define a “producer” that provides the instance of the interface.

● Define a concrete contract test that tests the instance returned by a “producer”

● Define a jUnit extension that locates all the contract tests, associates them
with the interface they test and locates all the classes that implement that
interface.

Producer Interface

public interface IProducer<T>() {

 public T newInstance();

 public void cleanUp();

};

Solution Diagram

Foo

FooImpl1

Solution Diagram

Foo Foo_CT @Contract(Foo.class)

FooImpl1

Solution Diagram

Foo Foo_CT @Contract(Foo.class)

FooImpl1 FooImpl1_CS @RunWith(ContractSuite.class)
@ContractImpl(FooImpl1.class)

@Contract
@Contract(Foo.class)
public class Foo_CT<T extends Foo> {

 private IProducer<T> fooProducer;

 @Contract.Inject
 public final void setFooContractTestProducer(IProducer<T> fooProducer) {
 this.fooProducer = fooProducer;
 }

 @ContractTest
 public void testAdd() {
 TestingLogger logger = …
 Object testObject = …
 Foo foo = fooProducer.newInstance();
 foo.register(logger);
 foo.add(testObject);
 assertTrue(logger.recordedAdd());
 assertTrue(foo.contains(testObject));
 }

 @After
 public void cleanup() {
 fooProducer.cleanUp();
 }
…
}

Foo Foo_CT

@ContractImpl(FooImpl1.class)
@RunWith(ContractSuite.class)
@ContractImpl(FooImpl1.class)
public class FooImpl1_CS {

 private IProducer<FooImpl1> fooProducer;

 public FooImpl1_CS() {

 fooProducer = new IProducer<FooImpl1>() {

 @Override
 public FooImpl1 newInstance() {
 return new FooImpl1();
 }

 @Override
 public void cleanUp() {
 // nothing to do
 }

 };
 }

 @Contract.Inject
 public final IProducer<FooImpl1> getTestProducer() {
 return fooProducer;
 }
}

FooImpl1 FooImpl1_CS

Runtime Result

FooImpl1 FooImpl1_CS
@RunWith(ContractSuite.class)
@ContractImpl(FooImpl1.class)

1. Find class specified in ContractImpl

Runtime Result

Foo

FooImpl1 FooImpl1_CS
@RunWith(ContractSuite.class)
@ContractImpl(FooImpl1.class)

1. Find class specified in ContractImpl
2. Find all ancestors of the class that are interfaces.

Runtime Result

Foo Foo_CT

FooImpl1 FooImpl1_CS

@Contract(Foo.class)

@RunWith(ContractSuite.class)
@ContractImpl(FooImpl1.class)

1. Find class specified in ContractImpl
2. Find all ancestors of the class that are interfaces.
3. Find all classes annotated with Contract and which test an ancestor interface.

Runtime Result

Foo Foo_CT

FooImpl1 FooImpl1_CS

@Contract(Foo.class)

@RunWith(ContractSuite.class)
@ContractImpl(FooImpl1.class)

1. Find class specified in ContractImpl
2. Find all ancestors of the class that are interfaces.
3. Find all classes annotated with Contract and which test an ancestor interface.
4. Instantiate each class found in step 3.

Runtime Result

Foo Foo_CT

FooImpl1 FooImpl1_CS

@Contract(Foo.class)

@RunWith(ContractSuite.class)
@ContractImpl(FooImpl1.class)

1. Find class specified in ContractImpl
2. Find all ancestors of the class that are interfaces.
3. Find all classes annotated with Contract and which test an ancestor interface.
4. Instantiate each class found in step 3.
5. Create a jUnit suite comprising all ContractTest annotated methods found in the classes

from step 3..

Runtime Result

Foo Foo_CT

FooImpl1 FooImpl1_CS

@Contract(Foo.class)

@RunWith(ContractSuite.class)
@ContractImpl(FooImpl1.class)

1. Find class specified in ContractImpl
2. Find all ancestors of the class that are interfaces.
3. Find all classes annotated with Contract and which test an ancestor interface.
4. Instantiate each class found in step 3.
5. Create a jUnit suite comprising all ContractTest annotated methods found in the classes

from step 3.
6. Get the Producer object from the contract suite and insert in classes instantiated in step 4.

Runtime Result

Foo Foo_CT

FooImpl1 FooImpl1_CS

@Contract(Foo.class)

@RunWith(ContractSuite.class)
@ContractImpl(FooImpl1.class)

1. Find class specified in ContractImpl
2. Find all ancestors of the class that are interfaces.
3. Find all classes annotated with Contract and which test an ancestor interface.
4. Instantiate each class found in step 3.
5. Create a jUnit suite comprising all ContractTest annotated methods found in the classes

from step 3.
6. Get the Producer object from the contract suite and insert in classes instantiated in step 4.
7. Execute the suite.

Complex Solution Diagram

Foo Foo_CT

FooImpl1 FooImpl1_CS

@Contract(Foo.class)

@RunWith(ContractSuite.class)
@ContractImpl(FooImpl1.class)

Bar Bar_CT @Contract(Bar.class)

Bits and Bobs

● There can be more than one ContractImpl for a single concrete class.

● ContactImpl has a skip property to ignore specific interface tests (e.g
bar.class).

● Coverage reporting:

– Unimplemented Tests

– Untested Interfaces
● Maven reporting plugin.

● Provides a Dynamic interface which triggers testing of the classes returned
from methods.

More Info

● https://github.com/Claudenw/junit-contracts

● Maven:

<dependency>
 <groupId>org.xenei</groupId>
 <artifactId>junit-contracts</artifactId>
 <version>0.1.5</version>
</dependency>

● Simplifying Contract Testing, Dr. Dobb's Journal, May
2014. http://www.drdobbs.com/testing/simplifying-
contract-testing/240167128

QA

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

