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● What is SVM?

● Discussion of current practices

● SVM OS and driver modifications

● Device options and implications
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SVM defined

Pointer sharing between CPU and GPU
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But wait, there’s more!

● Pointer sharing with buffers
○ Offset in device address space matches offset in process address space
○ Can use a buffer allocation API to manage device page tables
○ Allows OpenCL “fine grained, buffered” model

● Pointer sharing with a bufferless API
○ Requires pinning or page fault support
○ Allows OpenCL “fine grained, bufferless” model
○ Requires core OS and driver support
○ Ideal for application programmers

● Important to be clear when discussing “SVM”
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SVM PCIe and VT-d extensions

• ATS – Address Translation Services
• Basic IOMMU support

• PASID – Process Address Space ID
• Tells IOMMU which page tables to use, equivalent to the ASID on the 

CPU side
• PRI – Page Request Interface

• Allows functions to raise page faults to the IOMMU
• VT-d SVM

• Extends root complex IOMMU to comprehend x86 page table formats
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Good, old days
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VT-d (and big servers) make it more complicated...

DMA address is indirect
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Current interfaces (sans softpin)

● Buffer alloc
● Buffer map – allow direct CPU access to buffer
● Buffer read/write – just like read/write on I/O buffers
● Buffer share – create handle for inter-process sharing
● Buffer query – check status of buffer
● Exec buffer – execute code, pass in whole buffer list

○ Synchronizes with all of the above
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SVM changes
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Driver implications

• Must alloc/track PASID
• Either linked to process or device specific context struct

• Optionally design new APIs
• Potentially just “execute starting at this address” or “write to this address”

• Device<->CPU synchronization is flexible
• PCIe atomic ops
• Memory polling
• Interrupts passed from device to process through driver specific 

mechanism
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Possible SVM driver interfaces

• Malloc, mmap, etc – normal libc interfaces for memory 
management

• Context create ioctl takes a flag to indicate you want an SVM 
context
• Can mix & match SVM and non-SVM execution

• Single interface for submission: i915_exec_mm ioctl
• struct drm_i915_exec_mm { batch_ptr; ctx_id; ring, flags; fence; deps; 

}

• Synchronization through interrupt forwarding
• Command buffer contains interrupt command, driver maps that back 

to fd event for app
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SVM for devices
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SVM device options

● Adding PASID support
○ Can get you a shared address space on supported platforms
○ Application to device interaction still potentially complex – need to 

manage pinning, potentially include buffer alloc APIs
● Adding page faults

○ Allows for bufferless APIs – simple malloc and use of pointers across 
CPU/device boundaries

○ Major and minor faults can be handled
○ What to do while servicing the fault?
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Context handling

● Wait for fault handling
○ Simple, but potentially poor device utilization, depending on use model

● Restart/abort on fault
○ Simply re-submit work after fault is handled, starting from the top
○ Also simple to implement, but potentially even worse utilization than waiting

● Context switch on fault
○ Save device context on fault, switch to new context like on CPU
○ Potentially very complex for device designers
○ Added complexity for drivers
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