
1

SVM on Intel Graphics

Jesse Barnes
Intel Open Source Technology Center

2

● What is SVM?

● Discussion of current practices

● SVM OS and driver modifications

● Device options and implications

3

SVM defined

Pointer sharing between CPU and GPU

4

But wait, there’s more!

● Pointer sharing with buffers
○ Offset in device address space matches offset in process address space
○ Can use a buffer allocation API to manage device page tables
○ Allows OpenCL “fine grained, buffered” model

● Pointer sharing with a bufferless API
○ Requires pinning or page fault support
○ Allows OpenCL “fine grained, bufferless” model
○ Requires core OS and driver support
○ Ideal for application programmers

● Important to be clear when discussing “SVM”

5

SVM PCIe and VT-d extensions

• ATS – Address Translation Services
• Basic IOMMU support

• PASID – Process Address Space ID
• Tells IOMMU which page tables to use, equivalent to the ASID on the

CPU side
• PRI – Page Request Interface

• Allows functions to raise page faults to the IOMMU
• VT-d SVM

• Extends root complex IOMMU to comprehend x86 page table formats

6

Good, old days

DRAM

CPU

Root
Complex

PCIe EP

CPU page tables

GFX

GPU page tables

Generally devices used physical addrs

7

VT-d (and big servers) make it more complicated...

DMA address is indirect

DRAM

CPU

Root
Complex

PCIe EP

CPU page tables

GFX

GPU page tables

DMAR page tables

8

Current interfaces (sans softpin)

● Buffer alloc
● Buffer map – allow direct CPU access to buffer
● Buffer read/write – just like read/write on I/O buffers
● Buffer share – create handle for inter-process sharing
● Buffer query – check status of buffer
● Exec buffer – execute code, pass in whole buffer list

○ Synchronizes with all of the above

9

Kernel

Kernel
buffer

Device

User
buffer

1
2

3
a
13

a
2

3
b

1. Alloc buffer, syscall or ioctl to kernel (maybe for
both)

2. Alloc buffer, request device to initiate DMA
3a1. Device DMAs to/from kernel buffer
3a2. Kernel copies to user buffer
3b. Device DMAs directly to translated
 process address (pinned!)

Process address space

10

SVM changes

11

DRAM

CPURoot
Comple

x

PCIe EP

CPU page tables

GFX
VT-d
hw

VT-d looks
up correct
tables with

PASID

DMAR page tables

Potential to share page tables

Possible SVM model

12

Kernel

Kernel
buffer

Device

User
buffer

1
2

3

1. Alloc buffer, syscall or ioctl to kernel (maybe for
both)

2. Alloc buffer, request device to initiate DMA
3. Device DMAs directly to translated process

address (with faulting!)

Process address space

13

Driver implications

• Must alloc/track PASID
• Either linked to process or device specific context struct

• Optionally design new APIs
• Potentially just “execute starting at this address” or “write to this address”

• Device<->CPU synchronization is flexible
• PCIe atomic ops
• Memory polling
• Interrupts passed from device to process through driver specific

mechanism

14

Possible SVM driver interfaces

• Malloc, mmap, etc – normal libc interfaces for memory
management

• Context create ioctl takes a flag to indicate you want an SVM
context
• Can mix & match SVM and non-SVM execution

• Single interface for submission: i915_exec_mm ioctl
• struct drm_i915_exec_mm { batch_ptr; ctx_id; ring, flags; fence; deps;

}

• Synchronization through interrupt forwarding
• Command buffer contains interrupt command, driver maps that back

to fd event for app

15

SVM for devices

16

SVM device options

● Adding PASID support
○ Can get you a shared address space on supported platforms
○ Application to device interaction still potentially complex – need to

manage pinning, potentially include buffer alloc APIs
● Adding page faults

○ Allows for bufferless APIs – simple malloc and use of pointers across
CPU/device boundaries

○ Major and minor faults can be handled
○ What to do while servicing the fault?

17

Context handling

● Wait for fault handling
○ Simple, but potentially poor device utilization, depending on use model

● Restart/abort on fault
○ Simply re-submit work after fault is handled, starting from the top
○ Also simple to implement, but potentially even worse utilization than waiting

● Context switch on fault
○ Save device context on fault, switch to new context like on CPU
○ Potentially very complex for device designers
○ Added complexity for drivers

Q & A

