Apache MADlib (Incubating)

Distributed In-Database Machine Learning for Fun and Profit

Frank McQuillan Jan 31, 2016

Machine learning and distributed systems are just plain *FUN!!!*

Every large commercial enterprise \$\$\$ uses relational databases

Topics

Journey to Apache

In-database machine learning

Making R scalable

Journey to Apache Software Foundation

otal Confidential-Internal Use Only

History

MADlib project was initiated in 2011 by EMC/Greenplum architects and Joe Hellerstein from Univ. of California, Berkeley.

UrbanDictionary.com:

mad (adj.): an adjective used to enhance a noun.

1- dude, you got skills.

2- dude, you got mad skills.

Why Apache?

- Because the ASF is a great place to be!
- Collaborate on software in open and productive ways
- Need strong community for innovation

Pivotal is Committed to Open Source

Apache MADlib Overview

Pivotal

Pivotal Confidential-Internal Use Only

Scalable, In-Database Machine Learning

Big Data Machine Learning in SQL for Data Scientists

Open Source,
Apache (incubating)

Supports Postgres, Pivotal Greenplum Database, and Pivotal HAWQ

Powerful analytics for Big Data

- Open Source https://github.com/apache/incubator-madlib
- Supports Greenplum DB, Apache HAWQ/HDB and PostgreSQL
- Downloads and Docs: http://madlib.incubator.apache.org/

Predictive Modeling Library

Generalized Linear Models

- Linear Regression
- · Logistic Regression
- Multinomial Logistic Regression
- Cox Proportional Hazards Regression
- Elastic Net Regularization
- Robust Variance (Huber-White), Clustered Variance, Marginal Effects

Matrix Factorization

- Singular Value Decomposition (SVD)
- Low Rank

Linear Systems

- · Sparse and Dense Solvers
- Linear Algebra

Other Machine Learning Algorithms

- Principal Component Analysis (PCA)
- Association Rules (Apriori)
- Topic Modeling (Parallel LDA)
- Decision Trees
- Random Forest
- Support Vector Machines
- Conditional Random Field (CRF)
- Clustering (K-means)
- Cross Validation
- Naïve Bayes
- Support Vector Machines (SVM)

Time Series

ARIMA

Descriptive Statistics

Sketch-Based Estimators

- CountMin (Cormode-Muth.)
- FM (Flajolet-Martin)
- MFV (Most Frequent Values)
 Correlation and Covariance
 Summary

Inferential Statistics

Hypothesis Tests

Support Modules

Array and Matrix Operations Sparse Vectors Random Sampling Probability Functions

Data Preparation

PMML Export

Conjugate Gradient

Path Functions

Jan 2016

MADlib Features

- Better parallelism
 - Algorithms designed to leverage MPP and Hadoop architecture
- Better scalability
 - Algorithms scale as your data set scales
- Better predictive accuracy
 - Can use all data, not a sample
- ASF open source (incubating)
 - Available for customization and optimization

Supported Platforms

Linear Regression on 10 Million Rows in Seconds

Figure 5: Linear regression execution times using MADlib v0.3 on Greenplum Database 4.2.0, 10 million rows

Hellerstein, Joseph M., et al. "The MADlib analytics library: or MAD skills, the SQL." Proceedings of the VLDB Endowment 5.12 (2012): 1700-1711.

Linear Regression Scalability

100 features, no groups, heterosked=no

Performance tests are run on a Pivotal Data Computing Appliance (DCA) half-rack for GPDB 4.2.7.1 and a DCA half-rack for HAWQ 1.2.1.0 with 8 nodes and 6 segments per node.

Logistic Regression Scalability

Performance tests are run on a Pivotal Data Computing Appliance (DCA) half-rack for GPDB 4.2.7.1 and a DCA half-rack for HAWQ 1.2.1.0 with 8 nodes and 6 segments per node.

Example Usage

Train a model

Predict for new data

Architecture

Pivotal

Pivotal Confidential-Internal Use Only

Architecture

How to Implement Scalability

Example: Linear Regression

Finding linear dependencies between variables

$$y \approx c_0 + c_1 \cdot x_1 + c_2 \cdot x_2$$

i.e., want to find c_1 , c_2

	У	l	x1	x2	
	10.14	† 	0	0.3	•
	11.93	ļ	0.69	0.6	
Vector of	13.57	ļ	1.1	0.9	
dependent	14.17 15.25	 	1.39 1.61	1.2	F
variables y	16.15		1.79	1.8	m

Feature matrix X

Solve Using Ordinary Least Squares

$$\widehat{\boldsymbol{c}} = (X^T X)^{-1} X^T \boldsymbol{y}$$

$$\widehat{\boldsymbol{c}} = \underline{(X^T X)^{-1} X^T \boldsymbol{y}}$$

$$\widehat{\boldsymbol{c}} = \underline{(X^T X)^{-1} X^T \boldsymbol{y}}$$

$$X^T$$
 X

a c a b c d

$$\widehat{\boldsymbol{c}} = \underline{(X^T X)^{-1} X^T \boldsymbol{y}}$$

$$= [a^2 + c^2]$$

Operating across segments increases network traffic

$$X^T$$
 X
 $\begin{bmatrix} a & c \\ b & d \end{bmatrix}$ $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$

$$\widehat{\boldsymbol{c}} = \underline{(X^T X)^{-1} X^T \boldsymbol{y}}$$

$$= \begin{bmatrix} a^2 + c^2 & ab + cd \\ ba + dc & b^2 + d^2 \end{bmatrix}$$
 Looking at algebra, this is decomposable

$$\begin{array}{cccc} X^T & X \\ \hline \mathbf{a} & \mathbf{c} \\ \mathbf{b} & \mathbf{d} \end{array} \begin{array}{cccc} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{array}$$

$$\widehat{\boldsymbol{c}} = \underline{(X^T X)^{-1} X^T \boldsymbol{y}}$$

$$= \begin{bmatrix} a \\ b \end{bmatrix} \boxed{a b} + \begin{bmatrix} c \\ d \end{bmatrix} \boxed{c d}$$

$$= \begin{bmatrix} a^2 + c^2 & ab + cd \\ ba + dc & b^2 + d^2 \end{bmatrix}$$

Do in Single Table Scan

Basic Building Block: User-Defined Aggregate

Master

(A, b)

Aggregation phase 1 on each node:

- Initialize: $(A, \mathbf{b}) = (0,0)$

2. Transition for all rows:

$$(A, b) = (A, b) + (x \cdot x^{T}, x \cdot y)$$

$$\Rightarrow 3. \text{ Send } (A, b) \qquad \text{map}$$

reduce

Aggregation phase 2 on master node:

1. Merge:
$$(\overline{A}, \overline{b}) = (\overline{A}, \overline{b}) + (A, b)$$

2. Finalize:
$$\hat{\beta} = \text{solve}(\bar{A}, \bar{b}) = \bar{A}^{-1} \cdot \bar{b}$$

But not all data scientists speak SQL ...

Making R Scalable

Probab Confidential—Internal Ose Only

Why R?

"The preponderance of R and Python usage is more surprising ... two most commonly used individual tools, even above Excel. R and Python are likely popular because they are easily accessible and effective open source tools."

O'Reilly: Strata 2013 Data Science Salary Survey

PivotalR: Bringing MADlib and HAWQ to a Familiar R Interface

 Harness the familiarity of R's interface and the performance & scalability benefits of in-DB analytics

Pivotal R

SQL Code

PivotalR Design Overview

Call MADlib's in-DB machine learning functions directly from R
 Syntax is analogous to native R function
 PivotalR
 2. SQL to execute
 Database/HAWQ w/ MADlib
 3. Computation results

No data here

- Data doesn't need to leave the database
- All heavy lifting, including model estimation & computation, are done in the database
- Only strings of SQL and model output transferred across DBI

Data lives here

What's Coming Up?

Pivotal

Pivotal Confidential-Internal Use Only

Upcoming Release (1.9)

Predictive Models

 Support vector machines including non-linear kernel (Gaussian, polynomial)

Utilities

- Matrix operations (phase 2)
- Path functions (phase 1)
- Stemming

Descriptive Stats

Covariance matrix

Potential Future Features*

Predictive Models

- Mixed effects models
- · Time series models
- Parameter weights
- Graph models
- Connected components
- Linkage operations

Usability

- · Refresh interface for 2.0
- Python API

Utilities

- Path functions (phase 2)
- Pivoting
- Anonymization
- Sessionization
- Prediction metrics
- URI tools
- Stratified sampling

^{*} Subject to community interest

Please Join Us!

- Web sites
 - http://madlib.incubator.apache.org/
 - https://cwiki.apache.org/confluence/display
 - https://cran.r-project.org/web/packages/PivotalR/index.html
- Github
 - https://github.com/apache/incubator-madlib
 - https://github.com/pivotalsoftware/PivotalR
- Mailing lists
 - dev@madlib.incubator.apache.org
 - user@madlib.incubator.apache.org

