
Arabesque.io
A system for distributed graph mining
Carlos Teixeira, Alexandre Fonseca, Marco Serafini,
Georgos Siganos, Mohammed Zaki, Ashraf Aboulnaga

1

2 2

Graphs are ubiquitous

3

Graph Mining - Concepts
•  Label

•  Distinguishable property of a vertex (e.g. color).

•  Pattern - “Meta” sub-graph.
•  Captures subgraph structure and labelling

•  Embedding - Instance of a pattern.

•  Actual vertices and edges

1

4

65

1

6

1

3

6

4

3

6

4

2

6

2

Input graph Pattern Embeddings

3 2

4

Graph Mining: Cliques

4

Property:
Fully
connected
subgraphs

5

Graph Mining: Motifs

5

Motifs Size = 3

Motifs Size = 4

6

Graph Mining: FSM

6

1

2

4 3

7

8

14

9

10 11

13

12 6

5

•  Frequent Subgraph mining in a single large graph.

•  Find subgraphs that have a minimum embedding count

7

Applications

7

•  Web:
•  Community detection, link spam detection

•  Semantic data:

•  Attributed patterns in RDF

•  Biology:

•  Characterize protein-protein or gene interaction

8

•  Exponential number of embeddings

Challenges

Size of embedding

8

4K
22K

335K

7.8M

117M

1.7B

1 2 3 4 5 6

unique embedding (log-scale)

9

Challenges
•  No standard way to solve theses problems.
•  No way to distribute the processing easily.
•  Way too complicated for programmers (Many …isms)

• Detect and identify repeated subgraphs – Automorphisms
• Aggregate to Pattern – Isomorphism

•  Above all not all problems are tractable. No cluster grows exponentially.

9

10

State of the Art: Custom Algorithms

10

Easy to
Code

Efficient
Implementation

Transparent
Distribution

Custom
Algorithms ✗ ✓ ✗

11

State of the Art: Think Like a Vertex

11

Easy to
Code

Efficient
Implementation

Transparent
Distribution

Custom
Algorithms ✗ ✓ ✗

Think Like a
Vertex ✗ ✗ ✓

12

•  New execution model & system
•  Think Like an Embedding
•  Purpose-built for distributed graph mining
•  Hadoop-based

•  Contributions:

•  Simple & Generic API
•  High performance
•  Distributed & Scalable by design

Arabesque

12

13

Arabesque

Easy to
Code

Efficient
Implementation

Transparent
Distribution

Custom
Algorithms ✗ ✓ ✗

Think Like a
Vertex ✗ ✗ ✓

Arabesque ✓ ✓ ✓
13

14

Graph Mining - Concepts
•  Label

•  Distinguishable property of a vertex (e.g. color).

•  Pattern - “Meta” sub-graph.
•  Captures subgraph structure and labelling

•  Embedding - Instance of a pattern.

•  Actual vertices and edges

1

4

65

1

6

1

3

6

4

3

6

4

2

6

2

Input graph Pattern Embeddings

3 2

15

boolean	filter(Embedding	e)	{	
				return	isClique(e);	
}	
void	process(Embedding	e)	{	
				output(e);	
}	
boolean	shouldExpand(Embedding	embedding)	{	
				return	embedding.getNumVertices()	<	maxsize;	
}	
boolean	isClique(Embedding	e)	{	
				return	e.getNumEdgesAddedWithExpansion()==e.getNumberOfVertices()-1;	
}	

API Example: Clique finding

15

State of the Art
(Mace, centralized)

4,621 LOC

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
	

16

	
	
boolean	filter(Embedding	e)	{	
				return	true;	
}	
void	process(Embedding	embedding)	{	
								output(embedding);	
								map(AGG_MOTIFS,	embedding.getPattern(),	reusableLongWritableUnit);	
}	
boolean	shouldExpand(Embedding	embedding)	{	
				return	embedding.getNumVertices()	<	maxsize;	
}	
	

API Example: Motif Counting

16

State of the Art
(GTrieScanner, centralized)

3,145 LOC

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
	
	
	

17

API Example: FSM
• Ours was the first distributed implementation
• 280 lines of Java Code

• … of which 212 compute frequent metric

• Baseline (GRAMI): 5,443 lines of Java code.

17

18

Arabesque: An Efficient System

Application - Graph Centralized
Baseline

Arabesque
1 thread

Motifs - MiCo (MS=3) 50s 37s

Cliques - MiCo (MS=4) 281s 385s

FSM - CiteSeer (S=300) 4.8s 5s

•  As efficient as centralized state of the art

18

77s

19

Arabesque: A Scalable System
•  Scalable to thousands of workers
•  Hours/days → Minutes

Application - Graph Centralized Baseline Arabesque
640 cores

Motifs - MiCo 2 hours 24 minutes 25 seconds

Cliques - MiCo 4 hours 8 minutes 1 minute 10 seconds

FSM - Patents > 1 day 1 minute 28 seconds

19

First Distributed
Implementation

20

•  Avoid Redundant Work
•  Efficient canonicality checking

•  Subgraph Compression
•  Overapproximating Directed Acyclic Graphs (ODAGs)

•  Efficient Aggregation
•  2-level pattern aggregation

•  Avoid Redundant Work
•  Efficient canonicality checking

•  Subgraph Compression
•  Overapproximating Directed Acyclic Graphs (ODAGs)

How: Arabesque Optimizations

20

Outline
•  Graph mining exploration & Arabesque fundamentals
•  System Architecture & Optimizations
•  Evaluation of System
•  How to Run & Code

21

Graph mining exploration &
Arabesque fundamentals

23

Graph Mining - Exploration
•  Iterative expansion

•  Subgraph size n → Subgraph size n + 1
•  Connect to neighbours, one vertex at a time.

1

3

2

4

Input graph

1

2

3

4

Depth 1

1 2

1 3

2 1

2 3

2 4

3 1

3 2

3 4

4 2

4 3

Depth 2

23

24

Graph Mining - Exploration
1 2 3

1 2 4

1 3 2

1 3 4

4 2 3

4 2 1

4 3 2

4 3 1

2 1 3

2 3 1

2 3 4

2 4 3

3 1 2

3 2 1

3 2 4

3 4 2

Depth 3
1

3

2

4

Input graph

24

25

Arabesque: Fundamentals
•  Embeddings as 1st class citizens:

•  Think Like an Embedding model

Arabesque responsibilities User responsibilities

Graph
Exploration

Load
Balancing

Aggregation
(Isomorphism)

Automorphism
Detection

Filter

Process

25

26

Model - Think Like an Embedding
1 2

3

1 2
1 3

3 6

1 2

3

1 2
1 3

3 6

1 2

6
4

5 6

Exploration step 1 Exploration step 2 Exploration step 3

Input Output Input Output

1 2

3
1 2

6

1 2

64

1 2

63

Input Output

1 2

1 3

1. Start from a
set of initial
embeddings

1 2

3

1 2

6
e

2. Candidates:
Expand by 1 vertex/

edge

Filter

Discard

false

3. Filter
uninteresting
candidates

Process

Save

4. Produce outputs

true

User-defined functions
26

27

boolean	filter(Embedding	e)	{	
				return	isClique(e);	
}	
void	process(Embedding	e)	{	
				output(e);	
}	
boolean	shouldExpand(Embedding	embedding)	{	
				return	embedding.getNumVertices()	<	maxsize;	
}	
boolean	isClique(Embedding	e)	{	
				return	e.getNumEdgesAddedWithExpansion()==e.getNumberOfVertices()-1;	
}	

API Example: Clique finding

27

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
	

28

Guarantee: Completeness

1 2

6

1 2

63

1 2

64

Filter = true

Filter = true

Keep expanding

Filter = false

Filter = false

We can prune and be sure that we won’t ignore
desired embeddings

For each e, if filter(e) == true then Process(e) is executed

Requirement: Anti-monotonicity

29

Aggregation during expansion

•  Filter might need aggregated values
•  E.g.: Frequent subgraph mining

•  Frequency calculation → look at all candidates

•  Aggregation in parallel with exploration step
•  Embeddings filtered as soon as aggregated values are ready.

29

30

Aggregation during expansion

Process

4. Produce outputs

...

Aggr. key-value pairs for next step

map(k, v)

...

1 3

1 2

1. Initial embeddings
and aggr. values

2. Candidates: Expand
by 1 vertex/edge

Agg
Filter

Agg
Process

Save Discard

1-1. Filter using aggr.
values

1-2. Process using
aggr. values

Aggr. key-value pairs from previous step

e’

1 3

1 2

•  Filter function may depend on aggregated data
•  E.g.: Frequent subgraph mining

•  Frequency requires looking at all candidates

Exploration step 1 Exploration step 2

1

... ...

e

User-defined functions 30

31

Arabesque API
•  Main App-defined functions:
 boolean	filter(E	embedding);	
						void				process(E	embedding);	
						boolean	shouldExpand(E	newEmbedding);								//	Terminate	early	if	max	depth	defined		
						boolean	aggregationFilter(E	Embedding);						//	Ignore	embedding	
						boolean	aggregationFilter(Pattern	pattern);		//	Ignore	pattern	(ex.	not	frequent)	
						void				aggregationProcess(E	embedding);	
						void				handleNoExpansions(E	embedding);	

•  Performance improvements: 	
 					void	filter(E	existingEmbedding,	IntCollection	extensionPoints);	//	prune	extensions	
						boolean	filter(E	existingEmbedding,	int	newWord);																//	Canonicality	check	

•  Functions Provided by Arabesque:
 void	output(String	outputString);	
						void	map(String	name,	K	key,	V	value);	
						AggregationStorage<K,	V>	readAggregation(String	name);	
							
	

31

System Architecture &
Optimizations

33

Arabesque Architecture
Input

Embeddings
size n

split 1

split 4

split 7

split 2

split 5

split 8

split 3

split 6

split 9

Worker 2

Worker 1

Worker 3

Output
Embeddings size

n + 1
split 1

split 4

split 7

split 2

split 5

split 8

split 3

split 6

split 9

N
ext step

P
re

vi
ou

s
st

ep

33

34

Avoiding redundant work
•  Problem: Automorphic embeddings

•  Automorphisms == subgraph equivalences
•  Redundant work

1 2 3

34

3 2 1

Worker 1 Worker 2

==

35

Avoiding redundant work
•  Solution: Decentralized Embedding Canonicality

•  No coordination
•  Efficient

1 2 3

35

3 2 1

Worker 1 Worker 2

==

isCanonical(e) → true isCanonical(e) → false

36

Efficient Pattern Aggregation
•  Goal: Aggregate automorphic patterns to single key

•  Find canonical pattern
•  No known polynomial solution

1 2 2 4 3 5

3x Expensive graph
canonization

Canonical
pattern

37

Efficient Pattern Aggregation
•  Solution: 2-level pattern aggregation

1.  Embeddings → quick patterns
2.  Quick patterns → canonical pattern

1 2 2 4 3 5

3x Linear matching to
quick pattern

2) Canonical
pattern

1) Quick patterns

2x Expensive graph
canonization

38

Handling Exponential growth
•  Goal: handle trillions+ different embeddings?

•  Solution: Overapproximating DAGs (ODAGs)

•  Compress into less restrictive superset
•  Deal with spurious embeddings

4

1 5

2 3

Canonical Embeddings

1 4 2

1 4 3

1 4 5

2 3 4

2 4 5

3 4 5

Input Graph Embedding List

1

2

3

3

4

2

3

4

5

ODAG
 38

Performance

40

Evaluation - Setup
•  20 servers: 32 threads @ 2.67 GHz, 256GB RAM
•  10 Gbps network

•  3 algorithms: Frequent Subgraph Mining, Counting Motifs and Clique Finding

•  Input graphs:

Vertices # Edges # Labels Avg. Degree

CiteSeer 3,312 4,732 6 3

MiCO 100,000 1,080,298 29 22

Patents 2,745,761 13,965,409 37 10

Youtube 4,589,876 43,968,798 80 19

SN 5,022,893 198,613,776 0 79

Instagram 179,527,876 887,390,802 0 10

40

41

Evaluation - Scalability

41

42

Evaluation - Scalability

Application - Graph Centralized
Baseline

Arabesque - Num. Servers
(32 threads)

1 5 10 15 20
Motifs - MiCo 8,664s 328s 74s 41s 31s 25s

FSM - Citeseer 1,813s 431s 105s 65s 52s 41s

Cliques - MiCo 14,901s 1,185s 272s 140s 91s 70s

Motifs - Youtube Fail 8,995s 2,218s 1,167s 900s 709s

FSM - Patents >19h 548s 186s 132s 102s 88s

42

43

Evaluation - ODAGs Compression

43

4000
vertices

1.7 billion
embeddings

44 GB

60 MB

44

Evaluation - Speedup w ODAGs

44

45

Evaluation - 2-level aggregation

Motifs MiCo (MS =
4)

Motifs Youtube (MS=4) FSM CiteSeer (S=220,
MS=7)

FSM Patents
(S=24k)

Embeddings 10,957,439,024 218,909,854,429 1,680,983,703 1,910,611,704

Quick Patterns 21 21 1433 1800

Canonical Patterns 6 6 97 1348

Reduction Factor 521,782,810x 10,424,278,782x 1,173,052x 1,061,451x

45

46

Evaluation - 2-level aggregation

46

How to Run & Code

48

Requirements

48

•  Hadoop installation:
•  Runs a map-reduce job (Giraph based)

•  To develop:
•  Java 7

49

Input Graph

49

•  Graphs:
•  labels on vertices
•  labels on edges
•  Multiple edges with labels between two vertices

•  Graph should have sequential vertex ids, and it
should be ordered

50

How to Run?

50

./run_arabesque.sh	cluster.yaml	application.yaml	

51

Cluster.yaml
num_workers:	10	
num_compute_threads:	16	
output_active:	yes	
	
#	Giraph	configuration	
#giraph.nettyClientThreads:	32	
#giraph.nettyServerThreads:	32	
#giraph.nettyClientExecutionThreads:	32	
#giraph.channelsPerServer:	4	
#giraph.useBigDataIOForMessages:	true	
#giraph.useNettyPooledAllocator:	true	
#giraph.useNettyDirectMemory:	true	
#giraph.nettyRequestEncoderBufferSize:	1048576	

51

52

Fsm.yaml
computation:	io.arabesque.examples.fsm.FSMComputation		
master_computation:	io.arabesque.examples.fsm.FSMMasterComputation		
	
input_graph_path:	citeseer.graph		
output_path:	FSM_Output		
	
#communication_strategy:	embeddings		
	
#	Custom	parameters		
arabesque.fsm.support:	300		
#arabesque.fsm.maxsize:	7		
#	Split	all	aggregations	in	10	parts	for	parallel	aggregation		
#	(use	only	with	heavy	aggregations)		
#	arabesque.aggregators.default_splits:	10	
	

52

53

Cliques.yaml
computation:	io.arabesque.examples.clique.CliqueComputation		
input_graph_path:	citeseer-single-label.graph		
output_path:	Cliques_Output		
	
#communication_strategy:	embeddings		
	
optimizations:		

	-	io.arabesque.optimization.CliqueOptimization		
	
#	Custom	parameters		
arabesque.clique.maxsize:	4	

53

54

https://github.com/Qatar-Computing-Research-Institute/Arabesque

54

http://arabesque.io

•  Graph mining is complex

•  Existing approaches not ideal

•  Arabesque - facilitate distributed graph mining algorithms
•  General & Simple API
•  Efficient & Scalable

•  Just the beginning!!!

Conclusion

55

56

Graph Exploration with TLV
1.  Receive embeddings
2.  Expand by adding neighboring vertices
3.  Send canonical embeddings to their constituting vertices

56

1

3

4

3
2

Input graph

2

1 1-4

2-4

3-4

3

2

11-4-2
1-4-3

1-4-2

4

1-4-2
1-4-3
2-4-1
2-4-3
3-4-1
3-4-2

1-4-3

Receive Expand Send

Superstep 2 for vertex 4

44

57

Evaluation - TLP & TLV
•  Use case: frequent subgraph mining
•  No scalability. Bottlenecks:

•  TLV: Replication of embeddings, hotspots
•  TLP: very few patterns do all the work

57

total of 32 execution threads at 2.67GHz per core and 256GB
RAM. The servers are connected with a 10 GbE network.
Hadoop 2.6.0 was configured so that each physical server
contains a single worker which can use all 32 execution
threads (unless otherwise stated). Arabesque runs on Giraph
development trunk from January 2015 with added function-
ality for obtaining cluster deployment details and improving
aggregation performance. These modifications amount to 10
extra lines of code.

Vertices Edges Labels Av. Degree
CiteSeer 3,312 4,732 6 2.8
MiCo 100,000 1,080,298 29 21.6
Patents 2,745,761 13,965,409 37 10
Youtube 4,589,876 43,968,798 80 19
SN 5,022,893 198,613,776 0 79
Instagram 179,527,876 887,390,802 0 9.8

Table 1: Graphs used for the evaluation.

Datasets: We use six datasets (see Table 1). CiteSeer [14]
has publications as vertices, with their Computer Science
area as label, and citations as edges. MiCo [14] has authors
as vertices, which are labeled with their field of interest, and
co-authorship of a paper as edges. Patents [18] contains ci-
tation edges between US Patents between January 1963 and
December 1999; the year the patent was granted is consid-
ered to be the label. Youtube [10] lists crawled video ids and
related videos for each video posted from February 2007 to
July 2008. The label is a combination of the video’s rating
and length. SN, is a snapshot of a real world Social Network,
which is not publicly available. Instagram is a snapshot of
the popular photo and video sharing social network collected
by [28]. We consider all the graphs to be undirected. Note
that even if some of these graphs are not very large, the ex-
plosion of the intermediate computation and state required
for graph exploration (see Figure 1) makes them very chal-
lenging for centralized algorithms.
Applications and Parameters: We consider the three appli-
cations discussed in Sections 2, which we label FSM, Motifs
and Cliques. By default, all Motifs executions are run with a
maximum embedding size of 4, denoted as MS=4, whereas
Cliques are run with a maximum embedding size of MS=5.
For FSM, we explicitly state the support, denoted S, used
in each experiment as this parameter is very sensitive to the
properties of the input graph.

6.2 Alternative Paradigms: TLV and TLP
We start by motivating the necessity for a new framework
for distributed graph mining. We evaluate the two alternative
computational paradigms that we discussed in Section 3.2.
Arabesque (i.e., TLE) will be evaluated in the next subsec-
tion. We consider the problem of frequent subgraph mining
(FSM) as a use case. Note that there are currently no dis-

tributed solutions to solve FSM on a single large input graph
in the literature.

1 5 10
0

2

4

6

8

10

Number of nodes (32 threads)

Sp
ee

du
p

Ideal TLP TLV

Figure 7: Scalability Analysis of Alternative Paradigms:
FSM (S=300) on CiteSeer.

The Case of TLV: Our TLV implementation globally
maintains the set of embeddings that have been visited,
much like Arabesque. The implementation adopts the TLV
approach as described in Section 3.2 and uses the same
coordination-free technique as Arabesque to avoid redun-
dant work. The TLV implementation also uses application-
specific approaches to control the expansion process. Our
TLV implementation of FSM uses this feature to follow the
standard depth-first strategy of gSpan [43].

In Figure 7, we show the scalability of FSM with support
300 using the CiteSeer graph. As seen from the figure, TLV
does not scale beyond 5 servers. A major scalability bottle-
neck is that each embedding needs to be replicated to each
vertex that has the necessary local information to expand the
embedding further. In addition, high-degree vertices need to
expand a disproportionate fraction of embeddings. CiteSeer
is a scale-free graph thus affecting the scalability of TLV.

Overall TLV performance is two orders of magnitude
slower compared to Arabesque. TLV requires more than 300
seconds to run FSM on the CiteSeer graph, while Arabesque
requires only 7 seconds for the same setup. The total mes-
sages exchanged for this tiny graph is 120 million, versus
137 thousand messages required by Arabesque. Due to the
hot-spots inherent to the graph structure, or the label distri-
bution, and the extended duplication of state that the TLV
paradigm requires, we conclude that TLV is not suited for
solving these problems.

The Case of TLP: The TLP implementation is based on
GRAMI [14], which represents the state of the art for cen-
tralized FSM. GRAMI keeps state on a per-pattern basis, so
few relatively straightforward changes to the code-base were
sufficient to derive a TLP implementation where patterns are
partitioned across a set of distributed workers.

GRAMI uses a number of optimizations that are specific
to FSM. In particular, it avoids materializing all embeddings
related to a pattern, a common approach for TLP algorithms.
Whenever a new pattern is generated, its instances are re-
calculated on the fly, stopping as soon as a sufficient number
of embeddings to pass the frequency threshold is found.
GRAMI thus solves a simpler problem than the TLV and

