

معهد قطر لبحوث الحوسبة Qatar Computing Research Institute

Arabesque.io

A system for distributed graph mining

Carlos Teixeira, Alexandre Fonseca, Marco Serafini, Georgos Siganos, Mohammed Zaki, Ashraf Aboulnaga

Graphs are ubiquitous

Graph Mining - Concepts

- Label
 - Distinguishable property of a vertex (e.g. color).
- Pattern "Meta" sub-graph.
 - Captures subgraph structure and labelling
- Embedding Instance of a pattern.
 - Actual vertices and edges

Graph Mining: Cliques

Property: Fully connected subgraphs

Graph Mining: Motifs

Motifs Size = 3

Motifs Size = 4

Graph Mining: FSM

• Frequent Subgraph mining in a single large graph.

Applications

- Web:
 - Community detection, link spam detection
- Semantic data:
 - Attributed patterns in RDF
- Biology:
 - Characterize protein-protein or gene interaction

Size of embedding

Exponential number of embeddings

Challenges

- No standard way to solve theses problems.
- No way to distribute the processing easily.
- Way too complicated for programmers (Many ...isms)
 - •Detect and identify repeated subgraphs Automorphisms
 - •Aggregate to Pattern Isomorphism
- Above all not all problems are tractable. No cluster grows exponentially.

State of the Art: Custom Algorithms

State of the Art: Think Like a Vertex

	Easy to Code	Efficient Implementation	Transparent Distribution
Custom Algorithms	X		X
Think Like a Vertex	X	X	

Graph X

Arabesque

- New execution model & system
 - Think Like an Embedding
 - Purpose-built for distributed graph mining ____
 - Hadoop-based
- Contributions:
 - Simple & Generic API
 - High performance
 - Distributed & Scalable by design

Arabesque

Graph Mining - Concepts

- Label
 - Distinguishable property of a vertex (e.g. color).
- Pattern "Meta" sub-graph.
 - Captures subgraph structure and labelling
- Embedding Instance of a pattern.
 - Actual vertices and edges

API Example: Clique finding

```
boolean filter(Embedding e) {
 2
        return isClique(e);
                                                              ato of the Ar
 3
   }
                                                            (Mace, centralized)
 4
   void process(Embedding e) {
 5
       output(e);
                                                             4,621 LOC
 6
 7
   boolean shouldExpand(Embedding embedding) {
        return embedding.getNumVertices() < maxsize;</pre>
 8
 9
10
   boolean isClique(Embedding e) {
        return e.getNumEdgesAddedWithExpansion()==e.getNumberOfVertices()-1;
11
12
   }
```

API Example: Motif Counting

9

```
State of the Art
    boolean filter(Embedding e) {
 1
                                                             (GTrieScanner, centralized)
         return true;
 2
 3
                                                                  3.145 LOC
4
    void process(Embedding embedding) {
5
             output(embedding);
             map(AGG MOTIFS, embedding.getPattern(), reusableLongWritableUnit);
6
 7
8
    boolean shouldExpand(Embedding embedding) {
         return embedding.getNumVertices() < maxsize;</pre>
     }
10
```

API Example: FSM

- Ours was the first distributed implementation280 lines of Java Code
 - •... of which 212 compute frequent metric

•Baseline (GRAMI): 5,443 lines of Java code.

Arabesque: An Efficient System

· As efficient as centralized state of the art

Application - Graph	Centralized Baseline	Arabesque 1 thread	
Motifs - MiCo (MS=3)	50s	37s	
Cliques - MiCo (MS=4)	281s	- 385s -	
FSM - CiteSeer (S=300)	4.8s	5s	

Arabesque: A Scalable System

- Scalable to thousands of workers
- Hours/days \rightarrow Minutes

Application - Graph	Centralized Baseline	Arabesque 640 cores	
Motifs - First Distributed	2 hours 24 minutes	25 seconds	
Cliques Implementation	4 hours 8 minutes	1 minute 10 seconds	
FSM - Patents	> 1 day	1 minute 28 seconds	

How: Arabesque Optimizations

- Avoid Redundant Work
 - Efficient canonicality checking
- Subgraph Compression
 - Overapproximating Directed Acyclic Graphs (ODAGs)
- Efficient Aggregation
 - 2-level pattern aggregation

Outline

- Graph mining exploration & Arabesque fundamentals
- System Architecture & Optimizations
- Evaluation of System
- How to Run & Code

Graph mining exploration & Arabesque fundamentals

Graph Mining - Exploration

- Iterative expansion
 - Subgraph size $n \rightarrow$ Subgraph size n + 1
 - Connect to neighbours, one vertex at a time.

1 2 3 4 Depth 1

Depth 2

Graph Mining - Exploration

Input graph

Depth 3

Arabesque: Fundamentals

- Embeddings as 1st class citizens:
 - Think Like an Embedding model

Model - Think Like an Embedding

API Example: Clique finding

```
boolean filter(Embedding e) {
 2
       return isClique(e);
 3
   }
 4
   void process(Embedding e) {
 5
       output(e);
 6
 7
   boolean shouldExpand(Embedding embedding) {
        return embedding.getNumVertices() < maxsize;</pre>
 8
 9
   }
10
   boolean isClique(Embedding e) {
       return e.getNumEdgesAddedWithExpansion()==e.getNumberOfVertices()-1;
11
12
   }
```

Guarantee: Completeness

For each e, if filter(e) == true then Process(e) is executed

Requirement: Anti-monotonicity

Aggregation during expansion

- Filter might need aggregated values
 - E.g.: Frequent subgraph mining
 - Frequency calculation \rightarrow look at all candidates
- Aggregation in parallel with exploration step
 - Embeddings filtered as soon as aggregated values are ready.

Aggregation during expansion

- Filter function may depend on aggregated data
 - E.g.: Frequent subgraph mining
 - Frequency requires looking at all candidates

Arabesque API

Main App-defined functions:

```
boolean filter(E embedding);
void
       process(E embedding);
boolean shouldExpand(E newEmbedding); // Terminate early if max depth defined
boolean aggregationFilter(E Embedding); // Ignore embedding
boolean aggregationFilter(Pattern pattern); // Ignore pattern (ex. not frequent)
void aggregationProcess(E embedding);
void
     handleNoExpansions(E embedding);
```

Performance improvements:

void filter(E existingEmbedding, IntCollection extensionPoints); // prune extensions boolean filter(E existingEmbedding, int newWord); // Canonicality check

Functions Provided by Arabesque:

```
void output(String outputString);
void map(String name, K key, V value);
AggregationStorage<K, V> readAggregation(String name);
```

System Architecture & Optimizations

Arabesque Architecture

HH.

Avoiding redundant work

- Problem: Automorphic embeddings
 - Automorphisms == subgraph equivalences
 - Redundant work

Avoiding redundant work

- Solution: Decentralized Embedding Canonicality
 - No coordination
 - Efficient

Efficient Pattern Aggregation

- Goal: Aggregate automorphic patterns to single key
 - Find canonical pattern
 - No known polynomial solution

Efficient Pattern Aggregation

- Solution: 2-level pattern aggregation
 - 1. Embeddings \rightarrow quick patterns
 - 2. Quick patterns \rightarrow canonical pattern

Handling Exponential growth

- Goal: handle trillions+ different embeddings?
- Solution: Overapproximating DAGs (ODAGs)
 - Compress into less restrictive superset
 - Deal with spurious embeddings

Ca	Canonical Embeddings			
1	4	2		
1	4	3		
1	4	5		
2	3	4		
2	4	5		
3	4	5		

Embedding List

ODAG

Input Graph

Performance

Evaluation - Setup

- 20 servers: 32 threads @ 2.67 GHz, 256GB RAM
- 10 Gbps network
- 3 algorithms: Frequent Subgraph Mining, Counting Motifs and Clique Finding
- Input graphs:

	# Vertices	# Edges	# Labels	Avg. Degree
CiteSeer	3,312	4,732	6	3
MiCO	100,000	1,080,298	29	22
Patents	2,745,761	13,965,409	37	10
Youtube	4,589,876	43,968,798	80	19
SN	5,022,893	198,613,776	0	79
Instagram	179,527,876	887,390,802	0	10

Evaluation - Scalability

Number of nodes (32 threads)

Evaluation - Scalability

Application - Graph	Centralized	Arabesque - Num. Servers (32 threads)				
	Daseime	1	5	10	15	20
Motifs - MiCo	8,664s	328s	74s	41s	31s	25s
FSM - Citeseer	1,813s	431s	105s	65s	52s	41s
Cliques - MiCo	14,901s) 1,185s	272s	140s	91s	70s
Motifs - Youtube	Fail	8,995s	2,218s	1,167s	900s	709s
FSM - Patents	>19h) 548s	186s	132s	102s	88s

Evaluation - ODAGs Compression

Evaluation - Speedup w ODAGs

Evaluation - 2-level aggregation

	Motifs MiCo (MS = 4)	Motifs Youtube (MS=4)	FSM CiteSeer (S=220, MS=7)	FSM Patents (S=24k)
Embeddings	10,957,439,024	218,909,854,429	1,680,983,703	1,910,611,704
Quick Patterns	21	21	1433	1800
Canonical Patterns	6	6	97	1348
Reduction Factor	521,782,810x	10,424,278,782x	1,173,052x	1,061,451x

Evaluation - 2-level aggregation

How to Run & Code

Requirements

- Hadoop installation:
 - Runs a map-reduce job (Giraph based)
- To develop:
 - Java 7

Input Graph

- Graphs:
 - labels on vertices
 - labels on edges
 - Multiple edges with labels between two vertices
- Graph should have sequential vertex ids, and it should be ordered

How to Run?

./run_arabesque.sh cluster.yaml application.yaml

Cluster.yaml

num_workers: 10
num_compute_threads: 16
output_active: yes

Giraph configuration #giraph.nettyClientThreads: 32 #giraph.nettyServerThreads: 32 #giraph.nettyClientExecutionThreads: 32 #giraph.channelsPerServer: 4 #giraph.useBigDataIOForMessages: true #giraph.useNettyPooledAllocator: true #giraph.useNettyDirectMemory: true #giraph.nettyRequestEncoderBufferSize: 1048576

Fsm.yaml

computation: io.arabesque.examples.fsm.FSMComputation
master_computation: io.arabesque.examples.fsm.FSMMasterComputation

```
input_graph_path: citeseer.graph
output_path: FSM_Output
```

```
#communication_strategy: embeddings
```

```
# Custom parameters
arabesque.fsm.support: 300
#arabesque.fsm.maxsize: 7
# Split all aggregations in 10 parts for parallel aggregation
# (use only with heavy aggregations)
# arabesque.aggregators.default_splits: 10
```

Cliques.yaml

computation: io.arabesque.examples.clique.CliqueComputation
input_graph_path: citeseer-single-label.graph
output_path: Cliques_Output

#communication_strategy: embeddings

optimizations:

- io.arabesque.optimization.CliqueOptimization

Custom parameters
arabesque.clique.maxsize: 4

http://arabesque.io

https://github.com/Qatar-Computing-Research-Institute/Arabesque

Conclusion

- Graph mining is complex
- Existing approaches not ideal
- Arabesque facilitate distributed graph mining algorithms
 - General & Simple API
 - Efficient & Scalable
- Just the beginning!!!

Graph Exploration with TLV

- 1. Receive embeddings
- 2. Expand by adding neighboring vertices
- 3. Send *canonical* embeddings to their constituting vertices

Evaluation - TLP & TLV

- Use case: frequent subgraph mining
- No scalability. Bottlenecks:
 - TLV: Replication of embeddings, hotspots
 - TLP: very few patterns do all the work

Number of nodes (32 threads)