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Graphs are ubiquitous 
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Graph Mining - Concepts 
•  Label 

•  Distinguishable property of a vertex (e.g. color). 
 

•  Pattern - “Meta” sub-graph. 
•  Captures subgraph structure and labelling 

 
•  Embedding - Instance of a pattern. 

•  Actual vertices and edges 
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Graph Mining: Cliques 
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Property: 
Fully 
connected 
subgraphs 
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Graph Mining: Motifs 
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Motifs Size = 3 

Motifs Size = 4 
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Graph Mining: FSM 
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•  Frequent Subgraph mining in a single large graph. 

•  Find subgraphs that have a minimum embedding count 
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Applications 
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•  Web:  
•  Community detection, link spam detection 

 
•  Semantic data:  

•  Attributed patterns in RDF 
 
•  Biology:  

•  Characterize protein-protein or gene interaction 
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•  Exponential number of embeddings 

Challenges 

Size of embedding 
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Challenges 
•  No standard way to solve theses problems. 
•  No way to distribute the processing easily. 
•  Way too complicated for programmers (Many …isms) 

• Detect and identify repeated subgraphs – Automorphisms 
• Aggregate to Pattern – Isomorphism 

•  Above all not all problems are tractable. No cluster grows exponentially.  
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State of the Art: Custom Algorithms 
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Easy to 
Code 

Efficient 
Implementation 

Transparent 
Distribution 

Custom 
Algorithms ✗ ✓ ✗ 
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State of the Art: Think Like a Vertex 
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Easy to 
Code 

Efficient 
Implementation 

Transparent 
Distribution 

Custom 
Algorithms ✗ ✓ ✗ 

Think Like a 
Vertex ✗ ✗ ✓ 
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•  New execution model & system 
•  Think Like an Embedding 
•  Purpose-built for distributed graph mining 
•  Hadoop-based 

 
•  Contributions: 

•  Simple & Generic API 
•  High performance 
•  Distributed & Scalable by design 

Arabesque 
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Arabesque 

Easy to 
Code 

Efficient 
Implementation 

Transparent 
Distribution 

Custom 
Algorithms ✗ ✓ ✗ 

Think Like a 
Vertex ✗ ✗ ✓ 

Arabesque ✓ ✓ ✓ 
13 
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Graph Mining - Concepts 
•  Label 

•  Distinguishable property of a vertex (e.g. color). 
 

•  Pattern - “Meta” sub-graph. 
•  Captures subgraph structure and labelling 

 
•  Embedding - Instance of a pattern. 

•  Actual vertices and edges 
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boolean	filter(Embedding	e)	{	
				return	isClique(e);	
}	
void	process(Embedding	e)	{	
				output(e);	
}	
boolean	shouldExpand(Embedding	embedding)	{	
				return	embedding.getNumVertices()	<	maxsize;	
}	
boolean	isClique(Embedding	e)	{	
				return	e.getNumEdgesAddedWithExpansion()==e.getNumberOfVertices()-1;	
}	

API Example: Clique finding 
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State of the Art  
(Mace, centralized) 

 
4,621 LOC 

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
	



16 

	
	
boolean	filter(Embedding	e)	{	
				return	true;	
}	
void	process(Embedding	embedding)	{	
								output(embedding);	
								map(AGG_MOTIFS,	embedding.getPattern(),	reusableLongWritableUnit);	
}	
boolean	shouldExpand(Embedding	embedding)	{	
				return	embedding.getNumVertices()	<	maxsize;	
}	
	

API Example: Motif Counting 
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State of the Art  
(GTrieScanner, centralized) 

 
3,145 LOC 
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API Example: FSM 
• Ours was the first distributed implementation 
• 280 lines of Java Code 

• … of which 212 compute frequent metric 

• Baseline (GRAMI): 5,443 lines of Java code. 
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Arabesque: An Efficient System 

Application - Graph Centralized 
Baseline 

Arabesque 
1 thread 

Motifs - MiCo (MS=3) 50s 37s 

Cliques - MiCo (MS=4) 281s 385s 

FSM - CiteSeer (S=300) 4.8s 5s 

•  As efficient as centralized state of the art 
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Arabesque: A Scalable System 
•  Scalable to thousands of workers 
•  Hours/days → Minutes 

Application - Graph Centralized Baseline Arabesque  
640 cores 

Motifs - MiCo 2 hours 24 minutes 25 seconds 

Cliques - MiCo 4 hours 8 minutes 1 minute 10 seconds 

FSM - Patents > 1 day 1 minute 28 seconds 

19 

First Distributed 
Implementation 
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•  Avoid Redundant Work 
•  Efficient canonicality checking 

•  Subgraph Compression 
•  Overapproximating Directed Acyclic Graphs (ODAGs) 

•  Efficient Aggregation 
•  2-level pattern aggregation 

•  Avoid Redundant Work 
•  Efficient canonicality checking 

•  Subgraph Compression 
•  Overapproximating Directed Acyclic Graphs (ODAGs) 

How: Arabesque Optimizations 
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Outline 
•  Graph mining exploration & Arabesque fundamentals 
•  System Architecture & Optimizations 
•  Evaluation of System 
•  How to Run & Code 
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Graph mining exploration & 
Arabesque fundamentals 
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Graph Mining - Exploration 
•  Iterative expansion 

•  Subgraph size n → Subgraph size n + 1 
•  Connect to neighbours, one vertex at a time. 
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Graph Mining - Exploration 
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Arabesque: Fundamentals 
•  Embeddings as 1st class citizens: 

•  Think Like an Embedding model 
 

Arabesque responsibilities User responsibilities 

Graph 
Exploration 

Load 
Balancing 

Aggregation 
(Isomorphism) 

Automorphism 
Detection 

Filter 

Process 
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Model - Think Like an Embedding 
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boolean	filter(Embedding	e)	{	
				return	isClique(e);	
}	
void	process(Embedding	e)	{	
				output(e);	
}	
boolean	shouldExpand(Embedding	embedding)	{	
				return	embedding.getNumVertices()	<	maxsize;	
}	
boolean	isClique(Embedding	e)	{	
				return	e.getNumEdgesAddedWithExpansion()==e.getNumberOfVertices()-1;	
}	

API Example: Clique finding 
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Guarantee: Completeness 

1 2
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Filter = true 

Keep expanding 

Filter = false 

 
Filter = false 

We can prune and be sure that we won’t ignore 
desired embeddings 

For each e, if filter(e) == true then Process(e) is executed 

Requirement: Anti-monotonicity 
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Aggregation during expansion 

•  Filter might need aggregated values 
•  E.g.: Frequent subgraph mining 

•  Frequency calculation → look at all candidates 
 

•  Aggregation in parallel with exploration step 
•  Embeddings filtered as soon as aggregated values are ready. 

29 
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Aggregation during expansion 

Process 

4. Produce outputs 

... 

Aggr. key-value pairs for next step 
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Arabesque API 
•  Main App-defined functions: 
         boolean	filter(E	embedding);	
						void				process(E	embedding);	
						boolean	shouldExpand(E	newEmbedding);								//	Terminate	early	if	max	depth	defined		
						boolean	aggregationFilter(E	Embedding);						//	Ignore	embedding	
						boolean	aggregationFilter(Pattern	pattern);		//	Ignore	pattern	(ex.	not	frequent)	
						void				aggregationProcess(E	embedding);	
						void				handleNoExpansions(E	embedding);	
 
•  Performance improvements:  	
 					void	filter(E	existingEmbedding,	IntCollection	extensionPoints);	//	prune	extensions	
						boolean	filter(E	existingEmbedding,	int	newWord);																//	Canonicality	check	
   
•  Functions Provided by Arabesque: 
         void	output(String	outputString);	
						void	map(String	name,	K	key,	V	value);	
						AggregationStorage<K,	V>	readAggregation(String	name);	
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System Architecture & 
Optimizations 
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Arabesque Architecture 
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Avoiding redundant work 
•  Problem: Automorphic embeddings 

•  Automorphisms == subgraph equivalences 
•  Redundant work  

1 2 3 

34 
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Avoiding redundant work 
•  Solution: Decentralized Embedding Canonicality  

•  No coordination  
•  Efficient  

1 2 3 

35 

3 2 1 

Worker 1 Worker 2 

== 

isCanonical(e) → true isCanonical(e) → false 
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Efficient Pattern Aggregation 
•  Goal: Aggregate automorphic patterns to single key 

•  Find canonical pattern 
•  No known polynomial solution 

1 2 2 4 3 5

3x Expensive graph 
canonization  

Canonical 
pattern 
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Efficient Pattern Aggregation 
•  Solution: 2-level pattern aggregation 

1.  Embeddings → quick patterns 
2.  Quick patterns → canonical pattern 

1 2 2 4 3 5

3x Linear matching to 
quick pattern  

2) Canonical 
pattern 

1) Quick patterns 

2x Expensive graph 
canonization  
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Handling Exponential growth 
•  Goal: handle trillions+ different embeddings? 

 
•  Solution: Overapproximating DAGs (ODAGs) 

•  Compress into less restrictive superset 
•  Deal with spurious embeddings  
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Performance 
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Evaluation - Setup 
•  20 servers: 32 threads @ 2.67 GHz, 256GB RAM 
•  10 Gbps network 

 
•  3 algorithms: Frequent Subgraph Mining, Counting Motifs and Clique Finding 

 
•  Input graphs: 

# Vertices # Edges # Labels Avg. Degree 

CiteSeer 3,312 4,732 6 3 

MiCO 100,000 1,080,298 29 22 

Patents 2,745,761 13,965,409 37 10 

Youtube 4,589,876 43,968,798 80 19 

SN 5,022,893 198,613,776 0 79 

Instagram 179,527,876 887,390,802 0 10 

40 
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Evaluation - Scalability 

41 
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Evaluation - Scalability 

Application - Graph Centralized 
Baseline 

Arabesque - Num. Servers  
(32 threads) 

1 5 10 15 20 
Motifs - MiCo 8,664s 328s 74s 41s 31s 25s 

FSM - Citeseer 1,813s 431s 105s 65s 52s 41s 

Cliques - MiCo 14,901s 1,185s 272s 140s 91s 70s 

Motifs - Youtube Fail 8,995s 2,218s 1,167s 900s 709s 

FSM - Patents >19h 548s 186s 132s 102s 88s 
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Evaluation - ODAGs Compression 
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Evaluation - Speedup w ODAGs 
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Evaluation - 2-level aggregation 

Motifs MiCo (MS = 
4) 

Motifs Youtube (MS=4) FSM CiteSeer (S=220, 
MS=7) 

FSM Patents 
(S=24k) 

Embeddings 10,957,439,024 218,909,854,429 1,680,983,703 1,910,611,704 

Quick Patterns 21 21 1433 1800 

Canonical Patterns 6 6 97 1348 

Reduction Factor 521,782,810x 10,424,278,782x 1,173,052x 1,061,451x 
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Evaluation - 2-level aggregation 
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How to Run & Code 
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Requirements 
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•  Hadoop installation: 
•  Runs a map-reduce job (Giraph based) 

•  To develop: 
•  Java 7 
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Input Graph 
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•  Graphs: 
•   labels on vertices 
•   labels on edges 
•  Multiple edges with labels between two vertices 

•   Graph should have sequential vertex ids, and it 
should be ordered 
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How to Run? 

50 

./run_arabesque.sh	cluster.yaml	application.yaml	
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Cluster.yaml 
num_workers:	10	
num_compute_threads:	16	
output_active:	yes	
	
#	Giraph	configuration	
#giraph.nettyClientThreads:	32	
#giraph.nettyServerThreads:	32	
#giraph.nettyClientExecutionThreads:	32	
#giraph.channelsPerServer:	4	
#giraph.useBigDataIOForMessages:	true	
#giraph.useNettyPooledAllocator:	true	
#giraph.useNettyDirectMemory:	true	
#giraph.nettyRequestEncoderBufferSize:	1048576	

51 



52 

Fsm.yaml 
computation:	io.arabesque.examples.fsm.FSMComputation		
master_computation:	io.arabesque.examples.fsm.FSMMasterComputation		
	
input_graph_path:	citeseer.graph		
output_path:	FSM_Output		
	
#communication_strategy:	embeddings		
	
#	Custom	parameters		
arabesque.fsm.support:	300		
#arabesque.fsm.maxsize:	7		
#	Split	all	aggregations	in	10	parts	for	parallel	aggregation		
#	(use	only	with	heavy	aggregations)		
#	arabesque.aggregators.default_splits:	10	
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Cliques.yaml 
computation:	io.arabesque.examples.clique.CliqueComputation		
input_graph_path:	citeseer-single-label.graph		
output_path:	Cliques_Output		
	
#communication_strategy:	embeddings		
	
optimizations:		

	-	io.arabesque.optimization.CliqueOptimization		
	
#	Custom	parameters		
arabesque.clique.maxsize:	4	
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https://github.com/Qatar-Computing-Research-Institute/Arabesque 
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http://arabesque.io 



•  Graph mining is complex 

•  Existing approaches not ideal 

•  Arabesque - facilitate distributed graph mining algorithms 
•  General & Simple API 
•  Efficient & Scalable 

•  Just the beginning!!! 
 

 

Conclusion 
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Graph Exploration with TLV 
1.  Receive embeddings 
2.  Expand by adding neighboring vertices 
3.  Send canonical embeddings to their constituting vertices 
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Evaluation - TLP & TLV 
•  Use case: frequent subgraph mining 
•  No scalability. Bottlenecks: 

•  TLV: Replication of embeddings, hotspots 
•  TLP: very few patterns do all the work 

57 

total of 32 execution threads at 2.67GHz per core and 256GB
RAM. The servers are connected with a 10 GbE network.
Hadoop 2.6.0 was configured so that each physical server
contains a single worker which can use all 32 execution
threads (unless otherwise stated). Arabesque runs on Giraph
development trunk from January 2015 with added function-
ality for obtaining cluster deployment details and improving
aggregation performance. These modifications amount to 10
extra lines of code.

Vertices Edges Labels Av. Degree
CiteSeer 3,312 4,732 6 2.8
MiCo 100,000 1,080,298 29 21.6
Patents 2,745,761 13,965,409 37 10
Youtube 4,589,876 43,968,798 80 19
SN 5,022,893 198,613,776 0 79
Instagram 179,527,876 887,390,802 0 9.8

Table 1: Graphs used for the evaluation.

Datasets: We use six datasets (see Table 1). CiteSeer [14]
has publications as vertices, with their Computer Science
area as label, and citations as edges. MiCo [14] has authors
as vertices, which are labeled with their field of interest, and
co-authorship of a paper as edges. Patents [18] contains ci-
tation edges between US Patents between January 1963 and
December 1999; the year the patent was granted is consid-
ered to be the label. Youtube [10] lists crawled video ids and
related videos for each video posted from February 2007 to
July 2008. The label is a combination of the video’s rating
and length. SN, is a snapshot of a real world Social Network,
which is not publicly available. Instagram is a snapshot of
the popular photo and video sharing social network collected
by [28]. We consider all the graphs to be undirected. Note
that even if some of these graphs are not very large, the ex-
plosion of the intermediate computation and state required
for graph exploration (see Figure 1) makes them very chal-
lenging for centralized algorithms.
Applications and Parameters: We consider the three appli-
cations discussed in Sections 2, which we label FSM, Motifs
and Cliques. By default, all Motifs executions are run with a
maximum embedding size of 4, denoted as MS=4, whereas
Cliques are run with a maximum embedding size of MS=5.
For FSM, we explicitly state the support, denoted S, used
in each experiment as this parameter is very sensitive to the
properties of the input graph.

6.2 Alternative Paradigms: TLV and TLP
We start by motivating the necessity for a new framework
for distributed graph mining. We evaluate the two alternative
computational paradigms that we discussed in Section 3.2.
Arabesque (i.e., TLE) will be evaluated in the next subsec-
tion. We consider the problem of frequent subgraph mining
(FSM) as a use case. Note that there are currently no dis-

tributed solutions to solve FSM on a single large input graph
in the literature.
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Figure 7: Scalability Analysis of Alternative Paradigms:
FSM (S=300) on CiteSeer.

The Case of TLV: Our TLV implementation globally
maintains the set of embeddings that have been visited,
much like Arabesque. The implementation adopts the TLV
approach as described in Section 3.2 and uses the same
coordination-free technique as Arabesque to avoid redun-
dant work. The TLV implementation also uses application-
specific approaches to control the expansion process. Our
TLV implementation of FSM uses this feature to follow the
standard depth-first strategy of gSpan [43].

In Figure 7, we show the scalability of FSM with support
300 using the CiteSeer graph. As seen from the figure, TLV
does not scale beyond 5 servers. A major scalability bottle-
neck is that each embedding needs to be replicated to each
vertex that has the necessary local information to expand the
embedding further. In addition, high-degree vertices need to
expand a disproportionate fraction of embeddings. CiteSeer
is a scale-free graph thus affecting the scalability of TLV.

Overall TLV performance is two orders of magnitude
slower compared to Arabesque. TLV requires more than 300
seconds to run FSM on the CiteSeer graph, while Arabesque
requires only 7 seconds for the same setup. The total mes-
sages exchanged for this tiny graph is 120 million, versus
137 thousand messages required by Arabesque. Due to the
hot-spots inherent to the graph structure, or the label distri-
bution, and the extended duplication of state that the TLV
paradigm requires, we conclude that TLV is not suited for
solving these problems.

The Case of TLP: The TLP implementation is based on
GRAMI [14], which represents the state of the art for cen-
tralized FSM. GRAMI keeps state on a per-pattern basis, so
few relatively straightforward changes to the code-base were
sufficient to derive a TLP implementation where patterns are
partitioned across a set of distributed workers.

GRAMI uses a number of optimizations that are specific
to FSM. In particular, it avoids materializing all embeddings
related to a pattern, a common approach for TLP algorithms.
Whenever a new pattern is generated, its instances are re-
calculated on the fly, stopping as soon as a sufficient number
of embeddings to pass the frequency threshold is found.
GRAMI thus solves a simpler problem than the TLV and


