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 Why Graph Streaming?
e Single-Pass Algorithms Examples
* Apache Flink Streaming API

* The GellyStream API



Real Graphs are dynamic

Graphs are created from events happening in real-time
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Batch Graph Processing

We create and analyze a snapshot of the real graph
* the Facebook social network on January 30 2016
* user web logs gathered between March 1st 12:00 and 16:00

* retweets and replies for 24h after the announcement of the
death of David Bowie



Streaming Graph Processing

We consume events in real-time

e (Get results faster

* No need to wait for the job to finish

* Sometimes, early approximations are better than late exact
answers

* GGet results continuously

 Process unbounded number of events



Challenges

* Maintain the graph structure

* How to apply state updates efficiently?

* Result updates
* Re-run the analysis for each event?

* Design an incremental algorithm??

* Run separate instances on multiple snapshots?

 Computation on most recent events only



Single-Pass Graph Streaming

 Each event is an edge addition
 Maintains only a graph summary

 Recent events are grouped in graph windows



Streaming Degrees Distribution
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Graph Summaries

* spanners for distance estimation
* gparsifiers for cut estimation

* sketches for homomorphic properties

O LY
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Window Aggregations

Neighborhood aggregations on windows




Examples



Batch Connected Components

e State: the graph and a component ID per vertex
(initially equal to vertex ID)

* |terative Computation: For each vertex:

* choose the min of neighbors’ component IDs and own
component ID as new |ID

* if component ID changed since last iteration, notify neighbors
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Batch Connected Components
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Stream Connected Components

o State: a disjoint set data structure for the
components

 Computation: For each edge

* if seen for the 1st time, create a component with ID the min of
the vertex IDs

* If In different components, merge them and update the
component ID to the min of the component IDs

* if only one of the endpoints belongs to a component, add the
other one to the same component
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Stream Bipartite Detection

Similar to connected components, but

* Each vertex is also assigned a sign, (+) or (-)

* Edge endpoints must have ditterent signs

e T EEEEEEEEEEEEEsEEEsEEE .
L4 -
14 A Y
[} 1
1 ]
) q
‘ 4
~ L4
- - --a- e - - - --a- e w --- -
----/-----I---/-1-/—---I—.~
-
.
1
1
q
4
N OEE B B B B N B B BN BN BN BN BN BN N BN BN BN BN B B BN M B B M M M M W

* When merging components, if flipping all signs
doesn't work => the graph is not bipartite
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Stream Bipartite Detection
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Stream Bipartite Detection
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APl Requirements

* Continuous aggregations on edge streams
* (Global graph aggregations

e Support for windowing



The Apache Flink Stack

e Bounded Data Sources
* Blocking Operations
e Structured lterations

APls

Execution

* Unbounded Data Sources
e Continuous Operations
* Asynchronous lterations

Distributed Dataflow

Deployment

DataStream
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Unitying Data Processing

‘DataStream<String> events =
| env.addSource (new KafkaConsumer(..)) ;
§events.map(m).filter(m).window(m).fold(m)m

‘DataSet<String> text =
‘env.readTextFile (“hdfs://..”);
| text.map (..) .groupReduce(..) ..

L

DataSet DataStream

Distributed Dataflow
Deployment
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execution plan building
optimisation

scheduling tasks
monitoring/recovery

* task pipelining
* Dblocking
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Data Streams as ADTs
2

- Aggregations: reduce, fold, sum
i - Partitioning: forward, broadcast, shuftle, keyBy

Transformations: map, flatmap, filter, union...

Sources/Sinks: custom or Kafka, Twitter, Collections...

O * Tasks are long running in a pipelined execution.

« State is kept within tasks.

Transformations are applied per-record or window.

(o?o)
QOO
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Working with Windows

Why windows?
0000 We are often interested in fresh datal

window buckets/panes

1) Sicing windows

myKeyStream. timeWindow (
65 8  SUM#3 Time.of (60, TimeUnit.SECONDS),

#sec Time.of (20, TimeUnit.SECONDS)) ;
0 0 40 60 80 100

2) Tumbling windows

A I 55 } % A2 myKeyStream. timeWindow (

Time.of (60, TimeUnit.SECONDS)) ;
#sec

0 R0 40 60 80 100 120

Highlight: Flink can form and trigger windows consistently
under different notions of time and deal with late events!
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Example

myTextStream

.flatMap (new Splitter()) //transformation
.keyBy (0) //partitioning
.window (Time.of (5, TimeUnit.MINUTES))
.sum(1l) //rolling aggregation
.setParallelism(4) ;

counts.print() ;

11:01 - “dataflow is cool too”
10:48 - “cool, gelly is cool”

O (O
@ O

flatMap

O — <“gelly”,1>... <*“cool”,2>

Q —r<“dataflow”,1>... <“cool”,1>
print

OO0

window sum
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Gelly on Streams

* Static Graphs

* Multi-Pass Algorithms
* Full Computations

Gelly Gelly-Stream

|

Distributed Dataflow
Deployment

* Dynamic Graphs
* Single-Pass Algorithms
* Approximate Computations

|

DataStream
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Introducing Gelly-Stream

Gelly-Stream enriches the DataStream APl with two new additional ADTs:

 GraphStream:

* A representation of a data stream of edges.
 Edges can have state (e.g. weights).

e Supports property streams, transformations and aggregations.

e GraphWindow:

e A “time-slice” of a graph stream.

* |t enables neighbourhood aggregations
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GraphStream Operations

Property Streams Transformations

GraphStream -> DataStream GraphStream -> GraphStream

-getEdges () .mapEdges () ;
.getVertices () .distinct () ;
.numberOfVertices () .filterVertices () ;

.numberOfEdges () .filterEdges () ;
.getDegrees ()
.inDegrees ()
.outDegrees ()

.reverse () ;
.undirected () ;
.union () ;
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Graph Stream Aggregations

graphStream.aggregate (
new MyGraphAggregation(window, fold, combine, transform))

global aggregates
fold can be persistent or transient

(window) fold

edges f

’IOI reduce result
combi aggregate
graph O % property stream
S E— —_— —>
stream _
O
= J
I I I I
I I
local global
summaries summary
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Graph Stream Aggregations

graphStream.aggregate (
new MyGraphAggregation(window, fold, combine, transform))

edges

fold
(window) fold

graph

stream

—0~0

reduce map N

\iombine transform

result
aggregate
property stream

J

{lcoo

I
local global

summaries summary
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Connected Components

graphStream.aggregate (
new ConnectedComponents (window,fold,combine,transform))

(- N e @

stream / #components

graph ’ g \O O = <
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Connected Components
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Connected Components
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Connected Components
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Connected Components

N
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Connected COmpcnents
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Connected COmpcnents

graphStream.aggregate (
new ConnectedComponents (window,fold,combine,transform))
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Connected COmpcnents
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Connected COmpcnents
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graphStream.aggregate (
new ConnectedComponents (window,fold,combine,transform))

graph
stream
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Connected Components
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Connected COmpcnents

graphStream.aggregate (

new ConnectedComponents (window,fold,combine,transform))
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Connected COmpcnents

graphStream.aggregate ( 1 2
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a N | @—u
6
[ e
6,7,8} //

O O >
stream / #components

'© {1,2,3,4,5) 2 !
graph T - g
O

68



Aggregating Slices

graphStream.slice (Time.of (1, MINUTE), direction)
‘ N target

source

» Slicing collocates edges by vertex

iINnformation
Aggregations

_reduceonkEdges(); ° Neighbourhood aggregations are now

-foldNeighbors() enabled on sliced graphs
.applyOnNeighbors () ;
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FInding Matches Nearby

graphStream.filterVertices (GraphGeeks ())
.slice(Time.of (15, MINUTE), EdgeDirection.IN)
.applyOnNeighbors (FindPairs () )

GraphWindow :: user-place

GraphStream :: graph geek check-ins

—————

wendy checked_in soap_bar
steve checked_in soap_bar
tom checked_in joe’s_grill
sandra checked_in soap_bar
rafa checked_in joe’s_grill

.......................................................................

l FindPairs

{wendy, steve}
{steve, sandra}
{wendy, sandra}
{tom, rafa}
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Feeling Gelly?

Gelly-Stream: https://github.com/vasia/gelly-streaming

Apache Flink: https://github.com/apache/flink

An interesting read: http://users.dcc.uchile.cl/~pbarcelo/mcg.pdf

A cool thesis: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-170425

Twitter: @vkalavri , @senorcarbone
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