Single-pass Graph Stream Analytics
with Apache Flink

Vasia Kalavri <vasia@apache.org>
Paris Carbone <senorcarbone@apache.org>

1

mailto:vasia@apache.org
mailto:senorcarbone@apache.org?subject=

Outline

 Why Graph Streaming?
e Single-Pass Algorithms Examples
* Apache Flink Streaming API

* The GellyStream API

Real Graphs are dynamic

Graphs are created from events happening in real-time

(")

Vasia Kalavri < vkalavri - 9 Dec 2015

a Just submitted a talk w/ @SenorCarbone at the FOSDEM
@GraphDevroom! Have you submitted yours? CfP closes Dec 14
graphdevroom.github.io

. _/
N

V.24 (B GraphDevroom Retweeted

Vasia Kalavri < vkalavri - 9 Dec 2015

Just submitted a talk w/ @SenorCarbone at the FOSDEM
@GraphDevroom! Have you submitted yours? CfP closes Dec 14
\ graphdevroom.github.io)

4)

- Christophe Willemsen ikwattro - 9 Dec 2015
@vkalavri @SenorCarbone @GraphDevroom looking forward to your talk !!

- J
(L)

& Paris Carbone Retweeted
Vasia Kalavri vkalavri - 9 Dec 2015
Just submitted a talk w/ at the FOSDEM

! Have you submitted yours? CfP closes Dec 14

_ ' y

@GraphDevroom

Batch Graph Processing

We create and analyze a snapshot of the real graph
* the Facebook social network on January 30 2016
* user web logs gathered between March 1st 12:00 and 16:00

* retweets and replies for 24h after the announcement of the
death of David Bowie

Streaming Graph Processing

We consume events in real-time

e (Get results faster

* No need to wait for the job to finish

* Sometimes, early approximations are better than late exact
answers

* GGet results continuously

 Process unbounded number of events

Challenges

* Maintain the graph structure

* How to apply state updates efficiently?

* Result updates
* Re-run the analysis for each event?

* Design an incremental algorithm??

* Run separate instances on multiple snapshots?

 Computation on most recent events only

Single-Pass Graph Streaming

 Each event is an edge addition
 Maintains only a graph summary

 Recent events are grouped in graph windows

Streaming Degrees Distribution

#vertices
(@) N AN [@))

Streaming Degrees Distribution

1

#vertices
(@) N AN [@))

@GraphDevroom
Streaming Degrees Distribution

@GraphDevroom
Streaming Degrees Distribution

y @GraphDevroom
Streaming Degrees Distribution

y @GraphDevroom
Streaming Degrees Distribution

y @GraphDevroom
Streaming Degrees Distribution

y @GraphDevroom
Streaming Degrees Distribution

y @GraphDevroom
Streaming Degrees Distribution

y @GraphDevroom
Streaming Degrees Distribution

Graph Summaries

* spanners for distance estimation
* gparsifiers for cut estimation

* sketches for homomorphic properties

O LY
algorithm —>~ R2 Rammll algorithm

19

&

Window Aggregations

Neighborhood aggregations on windows

Examples

Batch Connected Components

e State: the graph and a component ID per vertex
(initially equal to vertex ID)

* |terative Computation: For each vertex:

* choose the min of neighbors’ component IDs and own
component ID as new |ID

* if component ID changed since last iteration, notify neighbors

22

@GraphDevroom

2

Batch Connected Components

1=0

9 @GraphDevroom

Batch Connected Components

=1

@GraphDevroom

2

Batch Connected Components

=2

@GraphDevroom

2

Batch Connected Components

=3

Stream Connected Components

o State: a disjoint set data structure for the
components

 Computation: For each edge

* if seen for the 1st time, create a component with ID the min of
the vertex IDs

* If In different components, merge them and update the
component ID to the min of the component IDs

* if only one of the endpoints belongs to a component, add the
other one to the same component

27

@GraphDevroom

28

@GraphDevroom

1 1, 3

29

@GraphDevroom

1 1, 3

2 2,5

el

4 7

30

@GraphDevroom

1 1,3
2 2,4, 5

1300

31

@GraphDevroom

1 1, 3

2 2,4, 0

0 o, /

e e

32

@GraphDevroom

1 1, 3
2 2,4,5
0 o, 7/, 8

ne e

33

@GraphDevroom

1 1, 3

2 2,4, 0

0 o, 7/, 8

S

34

@GraphDevroom

1 1,3
2 2,4, 5
0 o, 7/, 8

ISP

35

@GraphDevroom

1 1,2,3,4,5

0 o, /7,8

ISP

36

r

o

N

J

3
2
6

4
4
8

@GraphDevroom

1 1,2,3,4,5

0 o, /7,8

L Do e

37

@GraphDevroom

1 1,2,3,4,5

0 o, /7,8

INE PR

38

y - @GraphDevroom
Distributed Stream Connected

Components
oo oo -
- - -
oo oo -

=) =0T =

~. 1L

—

: 900

Stream Bipartite Detection

Similar to connected components, but

* Each vertex is also assigned a sign, (+) or (-)

* Edge endpoints must have ditterent signs

e T EEEEEEEEEEEEEsEEEsEEE .
L4 -
14 A Y
[} 1
1]
) q
‘ 4
~ L4
- - --a- e - - - --a- e w --- -
----/-----I---/-1-/—---I—.~
-
.
1
1
q
4
N OEE B B B B N B B BN BN BN BN BN BN N BN BN BN BN B B BN M B B M M M M W

* When merging components, if flipping all signs
doesn't work => the graph is not bipartite

40

@GraphDevroom

Stream Bipartite Detection

+) @ @&
+) & @

Cid="1

Cid=5

41

y @GraphDevroom

Stream Bipartite Detection

+) @ @&
+) & @

Cid="1

Cid=5

42

@GraphDevroom

Stream Bipartite Detection

+) @ @&
Cid=1
(+) Q @ -
(® o)
+) &
Cid=5

(+) (&)

43

y @GraphDevroom

Stream Bipartite Detection

+ @ @
Cid=1
+) & @ ¢
(® o)
+ @ &

e -

44

@GraphDevroom

Stream Bipartite Detection

+ @ @
Cid=1
® @ ¢
® O
© @ ® o

Can't flip signs and stay consistent
=> not bipartite! ‘ ()

45

APl Requirements

* Continuous aggregations on edge streams
* (Global graph aggregations

e Support for windowing

The Apache Flink Stack

e Bounded Data Sources
* Blocking Operations
e Structured lterations

APls

Execution

* Unbounded Data Sources
e Continuous Operations
* Asynchronous lterations

Distributed Dataflow

Deployment

DataStream

47

Unitying Data Processing

‘DataStream<String> events =
| env.addSource (new KafkaConsumer(..)) ;
§events.map(m).filter(m).window(m).fold(m)m

‘DataSet<String> text =
‘env.readTextFile (“hdfs://..”);
| text.map (..) .groupReduce(..) ..

L

DataSet DataStream

Distributed Dataflow
Deployment

XK.

v v
oo}
Job Manager

.
.
.
-
.
.
.
.
0
.
.
‘e
0

*
.
*
.
.
*
.
*
*
.
’0
*

48

execution plan building
optimisation

scheduling tasks
monitoring/recovery

* task pipelining
* Dblocking

esd

‘} .
s 4

Data Streams as ADTs
2

- Aggregations: reduce, fold, sum
i - Partitioning: forward, broadcast, shuftle, keyBy

Transformations: map, flatmap, filter, union...

Sources/Sinks: custom or Kafka, Twitter, Collections...

O * Tasks are long running in a pipelined execution.

« State is kept within tasks.

Transformations are applied per-record or window.

(o?o)
QOO

49

Working with Windows

Why windows?
0000 We are often interested in fresh datal

window buckets/panes

1) Sicing windows

myKeyStream. timeWindow (
65 8 SUM#3 Time.of (60, TimeUnit.SECONDS),

#sec Time.of (20, TimeUnit.SECONDS)) ;
0 0 40 60 80 100

2) Tumbling windows

A I 55 } % A2 myKeyStream. timeWindow (

Time.of (60, TimeUnit.SECONDS)) ;
#sec

0 R0 40 60 80 100 120

Highlight: Flink can form and trigger windows consistently
under different notions of time and deal with late events!

50

Example

myTextStream

.flatMap (new Splitter()) //transformation
.keyBy (0) //partitioning
.window (Time.of (5, TimeUnit.MINUTES))
.sum(1l) //rolling aggregation
.setParallelism(4) ;

counts.print() ;

11:01 - “dataflow is cool too”
10:48 - “cool, gelly is cool”

O (O
@ O

flatMap

O — <“gelly”,1>... <*“cool”,2>

Q —r<“dataflow”,1>... <“cool”,1>
print

OO0

window sum
51

@GraphDevroom

Gelly on Streams

* Static Graphs

* Multi-Pass Algorithms
* Full Computations

Gelly Gelly-Stream

|

Distributed Dataflow
Deployment

* Dynamic Graphs
* Single-Pass Algorithms
* Approximate Computations

|

DataStream

52

Introducing Gelly-Stream

Gelly-Stream enriches the DataStream APl with two new additional ADTs:

 GraphStream:

* A representation of a data stream of edges.
 Edges can have state (e.g. weights).

e Supports property streams, transformations and aggregations.

e GraphWindow:

e A “time-slice” of a graph stream.

* |t enables neighbourhood aggregations

53

e

=z
’

GraphStream Operations

Property Streams Transformations

GraphStream -> DataStream GraphStream -> GraphStream

-getEdges () .mapEdges () ;
.getVertices () .distinct () ;
.numberOfVertices () .filterVertices () ;

.numberOfEdges () .filterEdges () ;
.getDegrees ()
.inDegrees ()
.outDegrees ()

.reverse () ;
.undirected () ;
.union () ;

54

e

N

Graph Stream Aggregations

graphStream.aggregate (
new MyGraphAggregation(window, fold, combine, transform))

global aggregates
fold can be persistent or transient

(window) fold

edges f

’IOI reduce result
combi aggregate
graph O % property stream
S E— —_— —>
stream _
O
= J
I I I I
I I
local global
summaries summary

95

e

s S
=

Graph Stream Aggregations

graphStream.aggregate (
new MyGraphAggregation(window, fold, combine, transform))

edges

fold
(window) fold

graph

stream

—0~0

reduce map N

\iombine transform

result
aggregate
property stream

J

{lcoo

I
local global

summaries summary

56

>

Connected Components

graphStream.aggregate (
new ConnectedComponents (window,fold,combine,transform))

(- N e @

stream / #components

graph ’ g \O O = <

S/

Connected Components

N
graphStream.aggregate (1 9
new ConnectedComponents (window,fold,combine,transform)) " N\
5
a N | G 4
6
{1,3} '

@ :

graph \‘Q (O . ’

stream i Q / #components
\—/

2,9

e,
[——

58

Connected Components

N
graphStream.aggregate (1 9
new ConnectedComponents (window,fold,combine,transform)) " N\
5
a N | G 4
6
{1,3} '

@ :

graph \‘Q (O . ’

stream i Q / #components
\—/

2,9

e,
[——

59

Connected Components

N
graphStream.aggregate (1 2
new ConnectedComponents (window,fold,combine,transform)) " N
5
3 4
4 A g
{1,3} 6
{4,5} I

@ :

graph \‘Q (O . ’

stream i Q / #components
\—/

2,9

e,
[——

60

Connected Components

N
graphStream.aggregate (>
new ConnectedComponents (window,fold,combine,transform)) N
5
4
4 A g

P,

6,7}
1,3}
4,5} window
triggers

-(O
graph T - <
@

N

1/
3
6
| s
7

O O >
stream / #components

2,0
0,8

e Wl
Ny N et

61

Connected COmpcnents

~\

graphStream.aggregate (1 2
new ConnectedComponents (window,fold,combine,transform)) ‘ N
5
3 4
4 A g
6
{6,7} AN
8
0 i ‘
\{4,5} 3 _ !)
orepr O——O—+
\—/

[N
SRS

Connected COmpcnents

graphStream.aggregate (
new ConnectedComponents (window,fold,combine,transform))

(- N

{678}

~
2

N
~

4

5

N
K:

-(O
graph \245 A /
@

1
3
6
7

O O >
stream / #components

63

Connected COmpcnents

graphStream.aggregate (

~
2

1
new ConnectedComponents (window,fold,combine,transform)) ‘ N
5
3 4
4 A g
6
{678} N
2 — 4 G
7

stream O >O "

{©)
graph \2 4 5 - J
/ #components

@

64

Connected COmpcnents

graphStream.aggregate (

~
2

1
new ConnectedComponents (window,fold,combine,transform)) ‘ ‘\\
3 — 4
4 A g
6
(2,4] {6 7 8} N
1 — 4 G
7

stream O >O "

{©)
graph \2 4 5 - J
/ #components

@

e,

3,4

[

65

graphStream.aggregate (
new ConnectedComponents (window,fold,combine,transform))

graph
stream

{678}

O

/f
(1,24} window
N triggers
g <:> *2145
ol —
\—/
{3,4}
{7,8]
_

~

66

Connected Components

1 2
AND
3 — 4
6
‘ \
/
7
\ Y,
>
#components

Connected COmpcnents

graphStream.aggregate (

new ConnectedComponents (window,fold,combine,transform))

~
fij\ {6,7,8}
graph \‘1645 -
stream X Q /’
"
3.4
17,8
_

~

67

1 2
AND
3 — 4
6
‘ \
//
7
\ Y,
>
#components

Connected COmpcnents

graphStream.aggregate (1 2
new ConnectedComponents (window,fold,combine,transform)) ‘\\\\‘
a N | @—u
6
[e
6,7,8} //

O O >
stream / #components

'© {1,2,3,4,5) 2 !
graph T - g
O

68

Aggregating Slices

graphStream.slice (Time.of (1, MINUTE), direction)
‘ N target

source

» Slicing collocates edges by vertex

iINnformation
Aggregations

_reduceonkEdges(); ° Neighbourhood aggregations are now

-foldNeighbors() enabled on sliced graphs
.applyOnNeighbors () ;

69

e

s S
=

FInding Matches Nearby

graphStream.filterVertices (GraphGeeks ())
.slice(Time.of (15, MINUTE), EdgeDirection.IN)
.applyOnNeighbors (FindPairs ())

GraphWindow :: user-place

GraphStream :: graph geek check-ins

—————

wendy checked_in soap_bar
steve checked_in soap_bar
tom checked_in joe’s_grill
sandra checked_in soap_bar
rafa checked_in joe’s_grill

...

l FindPairs

{wendy, steve}
{steve, sandra}
{wendy, sandra}
{tom, rafa}

70

Feeling Gelly?

Gelly-Stream: https://github.com/vasia/gelly-streaming

Apache Flink: https://github.com/apache/flink

An interesting read: http://users.dcc.uchile.cl/~pbarcelo/mcg.pdf

A cool thesis: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-170425

Twitter: @vkalavri , @senorcarbone

https://github.com/vasia/gelly-streaming
https://github.com/apache/flink
http://users.dcc.uchile.cl/~pbarcelo/mcg.pdf
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-170425

