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Today's commodity OSes Exceedingly complex trusted computing
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TCB of an application on Linux:

» Kernel + loaded kernel modules

= Daemons

» X Server 4+ window manager
Desktop environment

= All running processes of the user

— User credentials are exposed to millions of lines of code
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Implications:

= High likelihood for bugs (need for frequent security updates)

» Huge attack surface for directed attacks

» Zero-day exploits
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= Pretension of unlimited resources
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...but how to compose those?
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— Application-specific TCB




Combined with virtualization
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\\\\/é. Object capabilities

Delegation of authority between components

» Each component lives in a virtual environment

= A component that possesses a capability can
» Use it (invoke)
» Delegate it to acquainted components




Recursive system structure

User
Application
User

Session
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Explicit assignment of physical resources to components

-




Resources can be attached to sessions
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@ Faithful virtualization (traditional)

authorized to
change the kernel

highly complex

access control?

/dev/vBoxdrv = === ===

non-root mode

Guest OS

kerne,
highly complex




W~  VirtualBox as Genode subsystem

Unmodified
Guest OS

Kerne,
A

User Mode

Privileged Mode







OS-level virtualization

Recompiled UNIX program

FreeBSD libc

libc plugin
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open read write
select ioctrl
stat readdir
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acpi_report_rom
platform_drv
ahcidry
part_blk
log_file_terminal
log

rump._fs
wifi_drv

ps2_drv

usb_drv

fb_drv

rtc_drv
trace_subject_reporter
input_merger
report_rom
nitpicker
wm_report_rom
wm

layouter
decorator
vbox_pointer
shared_fs
configfs
config_rom

rom

cli_nit_fb
cli_terminal

VirtualBo

L3




Rich applications
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Disclaimer

Currently used by only a few enthusiasts

No package management

Limited hardware support

Not yet palatable for uninitiated end users
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\% The Book “Genode Foundations”

GENODE

Operating System Framework

Foundations

http://genode.org/documentation /genode-foundations-15-05.pdf




Genode OS Framework
http://genode.org

Genode Labs GmbH
http://www.genode-labs.com

Source code at GitHub
http://github.com/genodelabs/genode
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