Genode as Desktop OS

&

Norman Feske
<norman.feske@genode-labs.com>

. Why another operating system?

. Architectural principles

. Framework for building operating systems

. Desktop scenarios

. Present and future

. Why another operating system?

. Architectural principles

. Framework for building operating systems

. Desktop scenarios

. Present and future

Scalability

Problem: Complexit

Today’'s commodity OSes Exceedingly complex trusted computing
base (TCB)

Problem: Complexity

Today's commodity OSes Exceedingly complex trusted computing
base (TCB)

TCB of an application on Linux:

» Kernel + loaded kernel modules
= Daemons
X Server 4+ window manager
Desktop environment
All running processes of the user

Problem: Complexity

Today's commodity OSes Exceedingly complex trusted computing
base (TCB)

TCB of an application on Linux:

» Kernel + loaded kernel modules

= Daemons

» X Server 4+ window manager
Desktop environment

= All running processes of the user

— User credentials are exposed to millions of lines of code

Implications:

= High likelihood for bugs (need for frequent security updates)

Implications:

= High likelihood for bugs (need for frequent security updates)

» Huge attack surface for directed attacks

Implications:

= High likelihood for bugs (need for frequent security updates)

» Huge attack surface for directed attacks

» Zero-day exploits

Universal Truths

Assurance Scalability

Accountability Utilization

—
—

S

ement

= Pretension of unlimited resources

» Lack of accounting

ement

= Pretension of unlimited resources

» Lack of accounting

— Largely indeterministic behavior

ement

Pretension of unlimited resources

Lack of accounting

— Largely indeterministic behavior
— Need for complex heuristics, schedulers

Problem: Resource management

= Pretension of unlimited resources

» Lack of accounting

— Largely indeterministic behavior
— Need for complex heuristics, schedulers

Genode as Desktop OS

Universal Truths

Assurance ﬁ Scalability

Accountability () Utiization
Security @ Ease of use

Key technologies

Microkernels

Componentization, kernelization

Capability-based security

Virtualization

Key technologies

Microkernels

Componentization, kernelization

Capability-based security

Virtualization

...but how to compose those?

. Why another operating system?

. Architectural principles

. Framework for building operating systems

. Desktop scenarios

. Present and future

— Application-specific TCB

Combined with virtualization

Delegation of authority between components

pabilities

Delegation of authority between components

» Each component lives in a virtual environment

pabilities

Delegation of authority between components

» Each component lives in a virtual environment

= A component that possesses a capability can
» Use it (invoke)

\\\\/é. Object capabilities

Delegation of authority between components

» Each component lives in a virtual environment

= A component that possesses a capability can
» Use it (invoke)
» Delegate it to acquainted components

Recursive system structure

User
Application
User

Session

ement

Explicit assignment of physical resources to components

-

Resources can be attached to sessions

. Why another operating system?

. Architectural principles

. Framework for building operating systems

. Desktop scenarios

. Present and future

GDB Monitor
Loader CU Mol (gloith

VirtualBox

VirtualBox
N

&
&Q

L4

a%
Y
g

g
}

/
inux

‘GDB Monitor ma! w & @
w - CLI Monitor & w @

 VirtualBox

7 SRt Tomna

B@N QKLA A oo

Tormioal LG

Co” JCILE e nrs

Terminal !
Terminal ’

Lighttpd ~ STDC++ MuPOF

libav

. Why another operating system?

. Architectural principles

. Framework for building operating systems

. Desktop scenarios

. Present and future

@ Faithful virtualization (traditional)

authorized to
change the kernel

highly complex

access control?

/dev/vBoxdrv = === ===

non-root mode

Guest OS

kerne,
highly complex

W~ VirtualBox as Genode subsystem

Unmodified
Guest OS

Kerne,
A

User Mode

Privileged Mode

OS-level virtualization

Recompiled UNIX program

FreeBSD libc

libc plugin

J

open read write
select ioctrl
stat readdir

—
Noux
VFS

l[e}
channels
L » [

Terlqjﬂgl
session

1
1
'
\‘ m m m,
N 7 N 7 \ ’
~o_~- ~Seo- N

config file “file
ROM system system

Report

<hover>

</hover >

<window-layout>

</window-layout>

Report

<window-1layout>

</window-layout>

»
3
[3
A

ROM

<hover>

</hover>

ROM

<window-1list>

</window-1list>

P

v
v
-

acpi_report_rom
platform_drv
ahcidry
part_blk
log_file_terminal
log

rump._fs
wifi_drv

ps2_drv

usb_drv

fb_drv

rtc_drv
trace_subject_reporter
input_merger
report_rom
nitpicker
wm_report_rom
wm

layouter
decorator
vbox_pointer
shared_fs
configfs
config_rom

rom

cli_nit_fb
cli_terminal

VirtualBo

L3

Rich applications

. Why another operating system?

. Architectural principles

. Framework for building operating systems

. Desktop scenarios

. Present and future

Disclaimer

Currently used by only a few enthusiasts

No package management

Limited hardware support

Not yet palatable for uninitiated end users

= Eating our own dog food (tool chain, email, IRC...)

Ambitions

= Eating our own dog food (tool chain, email, IRC...)

» Capability-based desktop environment

Ambitions

= Eating our own dog food (tool chain, email, IRC...)

» Capability-based desktop environment

» Muen and sel4 as base platforms

Ambitions

Eating our own dog food (tool chain, email, IRC...)

Capability-based desktop environment
Muen and selL4 as base platforms

RISC-V

Ambitions

Eating our own dog food (tool chain, email, IRC...)

Capability-based desktop environment
Muen and selL4 as base platforms
RISC-V

USB Armory

Ambitions

Eating our own dog food (tool chain, email, IRC...)

Capability-based desktop environment
Muen and selL4 as base platforms
RISC-V

USB Armory

Nix package manager

Ambitions

Eating our own dog food (tool chain, email, IRC...)

Capability-based desktop environment
Muen and selL4 as base platforms
RISC-V

USB Armory

Nix package manager

Collaborating with Qubes?

Ambitions

Eating our own dog food (tool chain, email, IRC...)

Capability-based desktop environment
Muen and selL4 as base platforms
RISC-V

USB Armory

Nix package manager

Collaborating with Qubes?

\% The Book “Genode Foundations”

GENODE

Operating System Framework

Foundations

http://genode.org/documentation /genode-foundations-15-05.pdf

Genode OS Framework
http://genode.org

Genode Labs GmbH
http://www.genode-labs.com

Source code at GitHub
http://github.com/genodelabs/genode

	Why another operating system?
	Architectural principles
	Framework for building operating systems
	Desktop scenarios
	Present and future

