
fpga manager & device tree
overlays

moritz fischer
 moritz.fischer@ettus.com mfischer

embedded sdr

wtf?! what does that
even mean embedded
sdr?

come see other talks
tomorrow @ sdr track

so why care about
fpgas?
performance

so why care about
fpgas?

reconfigurability

so why care about
fpgas?

also, they’re awesome

i won’t go into details of
fpga design

bitstream (firmware)
contains hardware
behavior

so how to configure an
fpga in a sane way?

let’s start off with a bit
of history

vendor solutions

altera
$ cat design.rbf > /dev/fpga0

xilinx
$ cat design.bin > /dev/xdevcfg

what could possibly go
wrong?

well … if you have more
than one device
implemented in the fpga

userland just goes ahead
and reloads the fpga

you maybe have a kernel
driver using fpga
resources as well ...

ehrm … whoopsie

should the user really
care what fpga is in the
system?

what if you had more
than one fpga?

even worse, hierarchy?
(i’m not making these up...)

partial reconfiguration
anyone?

fpga manager is vendor
neutral as part of linux
4.4 basic support for
socfpga and zynq

api - driver ops

write_init() /* prepare fpga for reload */
write() /* reconfigure fpga */
write_complete() /* callback when done */
state() /* returns framework internal state */
fpga_remove() /* called when removed */

api usage (kernel)
/* get reference from device node */
struct fpga_manager *mgr = of_fpga_mgr_get(dn);
/* load bitstream via fw layer*/
fpga_mgr_firmware_load(mgr, flags, “fw.bin”);
/* drop reference */
fpga_mgr_put(mgr);

this covers the simple
usecase: driver needs
fpga bitstream loaded

but we can do better
than that ...

let’s talk about device
tree overlays

device tree describes
hardware, but what if
hardware changes?

device tree overlays
allow us to add, remove,
and modify nodes of the
live tree

-- foo.dts (abbrev.)--
foo0: foo@0 {

compatible = “linux,foo”;
status = “disabled”;

};

-- overlay.dts (abbrev.) --
fragment@0 {

target = <&foo0>;
__overlay__ {

status = “okay”;
};

};

example to
modify status
property

example to
add bar
child

-- foo.dts (abbrev.) --
foo0: foo@0 {

compatible = “linux,foo”;
[...]

};

-- overlay.dts (abbrev.) --
fragment@0 {

target = <&foo0>;
__overlay__ {

bar0: bar@42 {
compatible = “linux,bar”;

};
};

};

seriously now, that’s
pretty close to what we
want, right?

fpga area (still in dev)

so

DO NOT TRUST THE
SLIDES

-- overlay.dts (abbrev.) --
fragment@0 {

target = <&fpga_mgr0>;
__overlay__ {

area0: area@40000000 {
compatible = “fpga-area”;
firmware-name = “foo.bin”;

c0: child@0 {
compatible = “linux,foo”

};

c1: child@4 {
compatible = “linux,bar”

};
};

};
};

will look
somewhat like
this

discussion still ongoing,
if you care about fpga
join the discussion on
lkml

some open issues, but
seem mostly solvable

what if fpga is pass-
through, i.e. soc spi
routed through fabric out
to a pin?

notifiers?
trying to let driver know
device is gonna be gone
for a bit

fw subsystem doesn’t
support (yet) streaming
fw for wimpy systems

buckle up …
demo time

if we got here, we’re
probably out of time…
questions?

thanks to these
guys

alan tull - fpga mgr core, socfpga

driver, reviews

gregkh - taking my patches

pantelis antoniou - dt overlays

michal simek - reviews, initial fpga

mgr

josh cartwright - reviews

-- foo.dts --
btn0: button@0 {

compatible = “ettus,
e3x0-button”;

status = “disabled”;
};

-- overlay.dts (abbrev.) --
fragment@0 {

target = <&btn0>;
__overlay__ {

status = “okay”;
};

};

example to
modify status
property

