
Free Software Automotive stack(s)

that run on available hardware

with a demo on the Raspberry Pi 2

Jeremiah C. Foster • 30.01.2016

Patrick Ohnewein
Head of Free Software & Open Technologies Department at TIS innovation park

When I speak with Patrick he often asks me; “Can I run Free Software
on my car?” The answer is, it depends.

It depends on having the right hardware and being able to get around
the encryption automakers use on the boot image. I’ll try and outline what’s
available today.

What is this talk about?

Outline

● Example of an IVI system with components
● Cars that run Linux

○ IVI (In-Vehicle Infotainment) vs. a complete automotive stack (ECU, RTOS, etc.)
● Example of an automotive system

● Overview of available hardware
● automotive specific engineering
● boot time and other challenges
● How to build on the Rpi2
● Resources (git repo URLs, wikis, etc.)

Cars that run GNU/Linux
● BMW i3 2013

● Nissan

○ Infiniti Q50 2014

○ Infiniti Q30/QX30 2016

● Cadillac XTS, CTS 2013

○ Cadillac will be moving to Android/Linux

● Tesla Model S

● Toyota Lexus IS 2014

○ Coming soon: Volvo, PSA, JLR

Automotive software

IVI

● Focus is on In-Vehicle infotainment and
rich media

● Complex systems in a demanding
environment, but not safety-critical

● Largely composed of commodity
software components

● GNU/Linux becoming more widely used

● Uses automotive specific networking
like MOST and EAVB

Complete stack

● Often has safety-critical and specific
boot time requirements

● Widely regulated and certified (ISO
26262)

● Extremely complex system with ~200
million loc

● RTOS and/or virtualization widely used.

● GNU/Linux relatively new to this
domain

● Automotive specific buses CAN and
electrical systems AUTOSAR

In-Vehicle Infotainment

Example stack

Base Operating System

CPU Adaptations ECU Adaptations

Resource
Access
Manager

GENIVI Services S S S

Application
Manager

Container / Isolation

QtIVI

Application
System UI

Application Application Application

FOSS automotive stacks

GENIVI

● Consortium of automotive
companies with BMW as a
founder

● Spends ⅓ of its budget on FOSS
development

● > 100 companies are members

● Fairly mature software base

● Built with Yocto and Baserock

Automotive Grade
Linux

● Linux Foundation project

● Mostly populated by Japanese
companies though Ford is a
member

● Released a demo image at CES

● Built with Yocto

http://genivi.org/
http://genivi.org/
http://genivi.org/
http://genivi.org/
http://genivi.org/
http://genivi.org/
https://www.automotivelinux.org/
https://www.automotivelinux.org/

FOSS automotive stacks

Openivi

● Created by start-up in the

automotive and telematics

industry

● Still early stages

● OpenIVI Mobility is a complete

system for rapidly prototyping

mobility concepts,

● Qt/HTML

Tizen IVI

● Linux Foundation project

● Automotive code from Tizen

mostly incorporated into AGL

distro

● Uncertain future for IVI

category of Tizen despite being

in production in passenger

vehicles

https://github.com/openivimobility
https://www.tizen.org/about/devices/vehicle-infotainment
https://www.tizen.org/about/devices/vehicle-infotainment

Available hardware

Renesas Porter Board

Renesas Silk Board

Raspberry Pi 2

Minnowboard Max

Wandaboard

Jetson TK1

● Renesas is a large automotive silicon vendor
from Japan

● Automotive sample boards also available

● Widely used hardware in automotive,

particularly in Asia

● 1.5 GHz ARM dual core Cortex-A15

● 2 GB DDR3 memory (dual channel)

● BSP on GitHub

● Available: http://www.digikey.com/product-

search/en?keywords=Y-RCAR-M2-PORTER

● ~360 USD

Renesas Porter board

http://www.digikey.com/product-search/en?keywords=Y-RCAR-M2-PORTER
http://www.digikey.com/product-search/en?keywords=Y-RCAR-M2-PORTER
http://www.digikey.com/product-search/en?keywords=Y-RCAR-M2-PORTER

● R-Car E2 SoC

● ARM Dual Core Cortex-A7

● GPU: PowerVR SGX540

● 1 GB DDR3 memory

● Works in the community, in AGL, GENIVI,

LTSI kernel project, etc.

● Available: http://www.digikey.com/product-

search/en?keywords=Y-RCAR-E2-SILK-A

● ~312 USD

Renesas Silk board

http://www.digikey.com/product-search/en?keywords=Y-RCAR-E2-SILK-A
http://www.digikey.com/product-search/en?keywords=Y-RCAR-E2-SILK-A
http://www.digikey.com/product-search/en?keywords=Y-RCAR-E2-SILK-A

● Freescale i.MX6 Duallite

● ARM Dual Core Cortex-A9

● GPU: Vivante GC 880 + Vivante GC 320

● 1 GB DDR3 memory

● iMX is widely used in the automotive

industry (Freescale is now part of NXP)

● Available: http://www.wandboard.org/buy

● ~99 USD (For the mid-range unit)

Wandaboard

http://www.wandboard.org/buy

● Backed by the Raspberry Pi foundation
● Broadcom CPU

● 900 MHz Quad-core Cortex-A7

● 1 GB LPDDR2 SDRAM memory

● Available: anywhere (Rpi magazine,

Adafruit, Amazon, etc.)

● ~35 USD

GENIVI Raspberry Pi 2
emo Platform

● 64 bit Intel Bay Trail Atom
● Dual core 1.33 GHz

● Integrated Intel HD Graphics with Open

Source hardware-accelerated drivers for

Linux OS

● “Owned” by minnowboard.org

foundation

● Debian GNU, Ubuntu, Fedora, Mint

● Yocto Project Compatible

● Available: http://wiki.minnowboard.

org/Where_to_buy

● ~140 USD

GENIVI Minnowboard Max
emo Platform

http://wiki.minnowboard.org/Linux
http://wiki.minnowboard.org/Linux
http://wiki.minnowboard.org/Yocto_Project
http://wiki.minnowboard.org/Yocto_Project
http://wiki.minnowboard.org/Where_to_buy
http://wiki.minnowboard.org/Where_to_buy
http://wiki.minnowboard.org/Where_to_buy

● NVIDIA Tegra K 1
● Quad-Core ARM Cortex-A15 "r3"
● 2.3 GHz Max clock speed
● DDR3L and LPDDR3 memory up to 8 Gig
● Available from NVIDIA’s “store”
● ~200 USD

GENIVI Nvidia Jetson TK1
emo Platform

● Holds nearly all of the

GENIVI components
including dependencies
and subsystems

● Evolving into a complete
SDK or ADK

● A good starting point for
the latest code

GENIVI Demo Platform

Fuel Stop Advisor

Proof of concept exercising numerous parts of GENIVI subsystems

Enhanced tank distance based on the fuel consumption on the route ahead

Warning if destination not reached

Proposal of reroute to a refill station

Fuel Stop Advisor

Open Street Map

Navit

sqlite3

dbus

FSA

Navi Core
plugin

Map Viewer
plugin

Point of Interest
plugin

PoI search

QML

Map viewer

dbus interface provided;

● org.genivi.mapviewer.MapViewerControl

Entire dbus interface documented and available online; http://git.projects.genivi.org/?

p=lbs/navigation.git;a=blob_plain;f=doc/map-viewer/MapViewerAPI.pdf;hb=f0ddb754ad4e16d8f650485a610818c06e0ceac3

W3C positioning PoC

The PositionWebService is a simple proof of concept (PoC) showing how positioning information provided
over D-Bus by the GENIVI EnhancedPositionService can be accessed within a web browser.

This PoC was developed to investigate how to match the already defined positioning dbus interface with the
Web API being defined by the W3C

The translation D-Bus <-> JavaScript is realized using a FireBreath NPAPI plugin.

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
Copyright © GENIVI Alliance 2013 25

Lifecycle Overview

Node State
Management

Resource
Management

Boot
Management

Supply
Management

Plug in for:
ADC,
PMIC

Plug in for:
Sensors,
Devices

Thermal
Management

Reaction based on conditions

Reaction based on conditions

Turn off display, drives, mute audio,…

Turn on fan, reduce audio volume,…

Plug in for:
Wakeup
reason,
node /
vehicle
network

Power
Management

PF-Events:
•Last User
•Clamp Sts
•User ID
Product-Event
•Button WU
•Bus WU
Raw-Events
•Vehicle Network

State chart

Events:
•Good
•Poor
•Bad

HMI, Phone,…
SWL/Update
Diagnostics

Events:
• Phone session
• Diag,SWL,Coding
session

• State change protocol
(register for shutdown,
get states,handshake
for state changes)
• Ctrls

Boot config

Plug in for:
Application specific
observing and recovering

Node

Boot the node

Node observing for CPU load,
memory, appl. crash

Events:
•Full
operational

•Error startup
Get states

Limitation Ctrl

Resource
config

Plug in for power
handling

Confi
g

1*: Get internal states
State change notification

1*

Set LUC
Last-User-Context

State chart

State chart

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
Copyright © GENIVI Alliance 2012

26

Lifecycle Manifest

Node State
Management

Resource
Management

Boot
Management

Supply
Management

Thermal
Management

Power
Management

cgroup service

Node State
Manager

Power Event
Collector

Node Resource
Mgr

Node Health
Monitor

Supply
 Manager

Thermal
Manager

systemd

Node Startup
Controller

Package
Product Component
Platform Component Node State

Machine

Health Management

27

start/
restart

systemd

NHM Plug-ins

register failure &
attempt recovery

Health Management will ensure that the node runs in a stable and defined manner. To do this it is planned to have the
following multi layered observation system and escalation strategy:

Applications

notify
alive

/dev/watchdog

notify alive

NHM

request app restart

execute
recovery

forward NHM heartbeat externally or to internal HW Watchdog

NSM

Boot
Management

start/
restart

notify alive

request node restart

monitoring of userland

GENIVI is a registered trademark of the GENIVI Alliance in the USA and other countries
Copyright © GENIVI Alliance 2012

10/5/201528

Qt Compositing using Wayland

• Modern, multi-process architecture

• Application Lifecycle Management

• Security model to protect integrity

• Hardware accelerated compositing

 using Wayland

• OpenGL and HTML applications

 can be seamlessly composited

• Elevates Qt from being a UI and
application framework to being a fully-
fledged automotive UI software platform

Application

Input Management

Notification infrastructure

Assembled views

10/5/201529

Automotive Challenges

• Sudden loss of power

• Boot time requirements

• Aborted shutdown requirements

• FLASH wear

• Latency requirements

• Expected life of product

• Length of projects

• Size of projects

• Complex supplier relationships

• Purchasing processes

• …

Apps in Cars

• Remember MirrorLink?

• Who owns the data?

• Native applications
– Large demand for this

– Possible to add functions during the vehicle life-time

– Matches the customer expectations

• Side effects
– Partitioning the UI in exchangeable parts

– Smaller updates

• There is a difference between building a
screen into a car and bringing a screen into the
car

• Safety requirements

• Driver disruptions

• Driver workload management

• Driven by liability and legal requirements

Legal Challenges

1. Install 'repo'
The first thing to do in order to use this manifest, is to install the 'repo' tool wrapper, and that needs to be done on each machine (or

user).

The following instructions can be used:

$ curl https://dl-ssl.google.com/dl/googlesource/git-repo/repo > /tmp/repo

$ chmod a+x /tmp/repo

$ sudo mv /tmp/repo /usr/local/bin/

Alternatively, if you don't have 'administrative' permission, or prefer to install in a user $HOME folder, you can do something along

these lines:

$ mkdir ~/bin

$ curl https://dl-ssl.google.com/dl/googlesource/git-repo/repo > ~/bin/repo

$ chmod a+x ~/bin/repo

$ export PATH=~/bin:$PATH

Do not forget to add ~/bin permanently to your PATH.

2. Fetch all git trees
Initialize your local working repository:

$ mkdir -p ~/projects/genivi-rpi2

$ cd ~/projects/genivi-rpi2

$ repo init -u https://github.com/amirna2/genivi-manifest.git -b master

Checkout all project trees:

$ repo sync

3. Run the build setup script (this will create a
build folder)
$ source ./buildenv/meta-ivi-rpi-init-build-env

4. Edit conf/bblayers.conf and conf/local.conf
For build/conf/bblayers.conf

BBLAYERS ?= " \
 /home/anathoo/projects/genivi-rpi2/poky/meta \
 /home/anathoo/projects/genivi-rpi2/poky/meta-yocto \
 /home/anathoo/projects/genivi-rpi2/poky/meta-yocto-bsp \
 /home/anathoo/projects/genivi-rpi2/poky/../meta-openembedded/meta-oe \
 /home/anathoo/projects/genivi-rpi2/poky/../meta-openembedded/meta-ruby \
 /home/anathoo/projects/genivi-rpi2/poky/../meta-ivi/meta-ivi \
 /home/anathoo/projects/genivi-rpi2/poky/../meta-ivi/meta-ivi-bsp \
 /home/anathoo/projects/genivi-rpi2/poky/../meta-genivi-demo \
 /home/anathoo/projects/genivi-rpi2/poky/../meta-qt5 \
 /home/anathoo/projects/genivi-rpi2/poky/../meta-raspberry \
 "
BBLAYERS_NON_REMOVABLE ?= " \
 /home/anathoo/projects/genivi-rpi2/poky/meta \
 /home/anathoo/projects/genivi-rpi2/poky/meta-yocto \
 /home/anathoo/projects/genivi-rpi2/poky/../meta-ivi/meta-ivi \
 "

For build/conf/local.conf

MACHINE ??= "raspberrypi2"
GPU_MEM = "128"
CORE_IMAGE_EXTRA_INSTALL += "wayland weston"
LICENSE_FLAGS_WHITELIST += "commercial"
PREFERRED_VERSION_weston ?="1.6.0"
MULTI_PROVIDER_WHITELIST += " \
 virtual/libgl \
 virtual/egl \
 virtual/libgles2 \
 virtual/mesa \
 "

#Comment out to avoid bitbake error with some GPLv3 licensed components
#INCOMPATIBLE_LICENSE ?= "GPLv3"

5. Start the build
$ bitbake -v genivi-demo-platform

 6. Flash image on the SD card
Replace sdX with the correct device ID

$sudo umount /dev/sdX

$sudo dd if=./tmp/deploy/images/raspberrypi2/genivi-demo-platform-raspberrypi2.rpi-sdimg of=/dev/sdX bs=128M

$sync

GENIVI

GENIVI provides a standard FOSS interface
following community best practices;

● World clone-able git repos: http://git.projects.genivi.org

● GENIVI Demonstrator Platform: https://at.projects.genivi.
org/wiki/x/aoCw

● Mailing lists: https://lists.genivi.org/mailman/listinfo

● IRC: Freenode #automotive

● Wiki: http://wiki.projects.genivi.org/

● Web: http://projects.genivi.org/

● Propose a project: http://genivi.org/propose

http://git.projects.genivi.org
https://at.projects.genivi.org/wiki/x/aoCw
https://at.projects.genivi.org/wiki/x/aoCw
https://at.projects.genivi.org/wiki/x/aoCw
https://lists.genivi.org/mailman/listinfo
http://wiki.projects.genivi.org/index.php/Main_Page
http://projects.genivi.org/
http://genivi.org/propose

Automotive Grade Linux

FOSS your ride

● Gerrit and git repos: https://gerrit.automotivelinux.
org/gerrit/#/admin/projects/

● Mailing lists: https://www.automotivelinux.org/community/mailing-lists

● IRC: Freenode #automotive

● Wiki: https://wiki.automotivelinux.org/

● Demo: https://www.automotivelinux.org/news/news/2016/01/agl-

shows-demo-ces-2016

https://gerrit.automotivelinux.org/gerrit/#/admin/projects/
https://gerrit.automotivelinux.org/gerrit/#/admin/projects/
https://gerrit.automotivelinux.org/gerrit/#/admin/projects/
https://www.automotivelinux.org/community/mailing-lists
https://wiki.automotivelinux.org/
https://www.automotivelinux.org/news/news/2016/01/agl-shows-demo-ces-2016
https://www.automotivelinux.org/news/news/2016/01/agl-shows-demo-ces-2016
https://www.automotivelinux.org/news/news/2016/01/agl-shows-demo-ces-2016

Neptune

