The Enlightenment of Wayland

The story of Enlightenment, EFL, Tizen & Wayland

Carsten Haitzler

c.haitzler@samsung.com raster@rasterman.com

What

What is...?

- Tizen
 - A Linux distribtion for Consumer Electronics
 - Mobile
 - Samsung Z1, Z3
 - Wearables
 - Samsung Gear 2, Gear 2 Neo, Gear S, Gear S2
 - TV
 - Samsung Smart TVs 2016 and beyond (also part of 2015)
 - Fridges
 - Samsung Smart Fridge
 - ... and more
 - Open Source http://source.tizen.org

What is... ?

- Enlightenment
 - A window manager, compositor and desktop shell for X11
 - Now ... also for Wayland
 - Window manager and compositor for Tizen
 - On both X11 and now Wayland
- EFL
 - Enlightenment Foundation Libraries
 - The libraries built to make Enlightenment and other applications
 - LGPLv2 + BSD Licensing
 - Libraries behind Tizen native development and core apps and tools

https://www.enlightenment.org

What is... ?

- Wayland
 - Replaces X11
 - A new display system protocol
 - A new set of client and server libraries to build display servers with
 - A set of conventions clients and servers agree to
 - Primarily focused on Linux
 - Built around the assumption of open drivers
 - Using DRM/KMS etc.
 - Focus on "every frame is perfect"
 - Focus on security and application isolation
 - Merges Display Server, Window Manager and Compositor into one

http://wayland.freedesktop.org

- It's cool
- Everyone else is doing it

- It's cool
- Everyone else is doing it
 - But really ...

- It's cool
- Everyone else is doing it But really ...
- Wayland is ...
 - Free of legacy design issues X11 has to maintain
 - Smaller codebase than X11
 - Easier to get a "perfect UI" in than X11
 - Easier to support hardware display features than X11
 - More secure than X11

- It's cool
- Everyone else is doing it But really ...
- Wayland is ...
 - Free of legacy design issues X11 has to maintain
 - Smaller codebase than X11
 - Easier to get a "perfect UI" in than X11
 - Easier to support hardware display features than X11
 - More secure than X11
 - Less mature and tested than X11

Connect/Display

Display (or modification) of windows

Regular Application

Window Manager Compositor

X Server

Often results in this...

Background handled by WM/Compositor

Rendering updates

Regular Application

Window Manager Compositor

X Server

Problems as a result

- Sometimes compositor renders partial content
 - Responds to first damage event, and misses others
 - Other damages are fixed up next frame

Tearing

Problems as a result

- If rendering client-side, most pixels end up being copied to the target
 - Huge amounts of memory bandwidth needed
 - ~500MB/sec for 1080p @ 60HZ needing copying
 - 2GB/sec for UHD ...
 - Even worse if you don't use OpenGL or MIT-SHM extension
 - This can easily drop framerates by 20-50%
- Requires display server to have complete drawing subsystem
 - A legacy decision for X11 before shared libraries existed
 - Allows sharing rendering code via the XServer process
 - Must remain pixel-perfect to retain compatibility

Input events

Problems here...

- WM/Compositor can't rotate, zoom or transform content
 - Input event co-ordinates can only match "original" window geometry
- WM can set what window has focus
 - Clients can too
 - Leads to possible fighting between clients and WM
- Clients can listen to all input
 - Huge security issue e.g. any app can be a keylogger
- Clients can steal input locking everyone out
 - This can affect even screensavers and screenlocks by preventing screenlocks
 - The infamous "leave a menu open to prevent a screen locking" bug

Why does Tizen REALLY want Wayland

- Security and client isolation
 - Tizen needs to sandbox apps properly
 - Apps may be downloaded and not audited or able to be trusted
 - May be closed source
 - Could contain backdoors or trojans
- If 3rd party apps can't be trusted, they need to be isolated & secure
 - Cannot get access to data unless approved by the user
 - e.g. Contacts, Photos, Microphone, Camera etc. etc.
 - Cannot manipulate other apps
 - Cannot listen into input except their own

Why does Tizen REALLY want Wayland

- Far better zero-copy rendering support
 - Tizen targets embedded devices which often have very little processing power
 - Need to limit copies

Why does Tizen REALLY want Wayland

- Ensure you don't see partial updates
 - Tizen is meant to have "commercial quality display"
 - Partial updates and tearing are not acceptable
 - Major competitors have tear-free display
 - Can't compete without at least matching

Why does Tizen REALLY want Wayland

- Massively reduce round-trips
 - Performance matters much more on low-end embedded devices
 - Users expect almost instant responsiveness
 - Wayland can improve startup time of applications on target devices by several 100ms vs X11
 - Tests have shown ~400ms improvements
 - Memory usage reduced
 - Apps can save between ~1 to ~11MB
 - Compositor saves ~ 48MB
 - All of this while keeping the same (approximately) functionality, look and feel.

Why does Tizen REALLY want Wayland

- Far better designed support for hardware layers
 - Embedded hardware often supports several RGBA and YUV overlays
 - This allows zero-copy buffer assignment not just for fullscreen apps but for multiple windows
 - Regular mid-range hardware often supports 5 layers or more
 - Wayland can make better use of this via Surfaces and Sub-Surfaces
 - Allows compositor to effectively "turn off" and...
 - Wake up to deliver input events to client apps
 - Wake up on new buffer display
 - Assign application output buffer handles/pointers to the correct display output layer

Why does Tizen REALLY want Wayland

- Rotation
 - We need good, clean rotation support for Tizen and Wayland delivers
 - Phones, Tablets and Wearables need to rotate
 - Even TVs need rotation (to become vertical banner displays)
 - We currently do it in X11 with lots of tricks and client-side support
 - Wayland can clean this up.
 - Opens up possibilities of things like shared "touch tables"
 - Multiple people around a single table
 - Different pieces of content (windows) at differing rotations per person or content

Rendering

- There is only a single framebuffer
 - There is offscreen data like pixmaps can't be seen (just storage)
- Xserver does the actual rendering to framebuffer or pixmaps
 - Clients cannot directly render to these locations
 - There are exceptions and hacks another discussion
 - At most clients can:
 - Render to a local memory segment and upload
 - Render with GPU to OpenGL backbuffer then "swap" to a window to display
- Xserver will "clip" rendering only to the correct output regions
 - Invisible parts of windows can avoid beiing drawn entirely
 - It is possible to bypass this it is very anti-social

- Composited X11 forces rendering to a window to redirect
 - Goes to off-screen pixmap that mimics window size
 - Pixmap allocated by Xserver automatically on resize
 - If window is obscured, all rendering still happens

- Closer to X11 Composited Rendering
 - Every Window (Surface) displays a buffer
 - Compositor is in charge of desicding how to display the buffer
 - Clients allocate and fill buffers
 - Can render to buffer any way they like
 - Compositor is not involved in rendering and doesn't know how
 - Send buffer to compositor when done
 - Compositor may need to render to display buffer or assign to hardware scanout

Regular Application

Wayland Compositor

Regular Application

2 3

Spare Buffers

What this means

- Display framerate is generally controlled by compositor
 - Can be syncronized to screen refresh
- Sending a buffer is zero-copy
 - Application simply sends protocol with the buffer handle, not data
- Buffers may be Posix Shared Memory
 - mmap() the buffers and render directly from them or copy to texture or other destination
- Buffers may be GPU accessible memory
 - Compositor can render them by wrapping texture around buffer or assign buffer to display output hardware if possible
- Result
 - Smooth rendering with no tearing and no unnecessary copies

Wayland is better than X11 Wayland is good for Tizen

Transition

How did the transition to Wayland happen

- Had to transition 2 major things
 - Client side application toolkit
 - Allow applications to display and get input from any Wayland compositor
 - Compositor/Window Manager
 - Enlightenment uses same toolkit as clients
- Client-side toolkit started first
 - Had an existing compositor (Weston) to test against

Client-side

- Ported window layer
 - Windows in X11, Windows, OSX etc. "surfaces" in Wayland
- Ported rendering
 - First SHM buffer rendering
 - Simpler and relied on no specific driver support
 - All rendering already done for other targets just need a different target
- Ported input
 - Need to get Mouse and Keyboard input events
 - Are now extending more advanced input devices
- Ported EGL/OpenGL-ES
 - Similar to X11 EGL+GL but with surfaces not X11 windows
 - EGL driver layer library takes care of buffer sending + management

Compositor-side

- Needed to add display engine for:
 - KMS/DRM display (configure display via KMS)
 - Software rendering to fill DRM buffers
 - Map, fill, display
 - EGL+GL for hardware acceleration
- Liblnput
 - Use this library to get access to input devices
 - Send input to specific clients

Compositor-side

- Compositor
 - Had to make compositing non-optional
 - X11 allowed compositing as an add-on feature
 - Implmented by extra plug-in module and X11 infrastructure
 - Compositing in core as a non-optional design \rightarrow the only sane way forward
 - Use new engines
 - Use X11 engines (Software, GL) for X11 compositing
 - Use new DRM and GL DRM modules for software an hardware accelerated display direct to KMS/FB
 - Remove/isolate X11 specific code
 - Window management code for X11 vs Wayland client management
 - X11 code for screen management (Randr)
 - X11 code for backlight controls
 - ... and much more

Results

- Enlightenment now is BOTH:
 - X11 WM+Compositor
 - Wayland Compositor (direct to KMS/FB)
 - *(can even be Wayland compositor in-a-window in X11 like Weston)*
- EFL using apps
 - Can work in X11 AND Wayland
 - And Windows, OSX, basic /dev/fb, ...
- Tizen can move to Wayland
 - Enlightenment is now Tizen's Wayland compositor (Mobile, TV, Wearable ...)
 - Most clients use EFL as the toolkit \rightarrow so clients work too
 - Still have lots of special use cases to solve for input and display
 - Working on them