
The Enlightenment of Wayland

The story of Enlightenment, EFL, Tizen & Wayland

Carsten Haitzler

c.haitzler@samsung.com
raster@rasterman.com

What

What is… ?

● Tizen
– A Linux distribtion for Consumer Electronics

● Mobile
– Samsung Z1, Z3

● Wearables
– Samsung Gear 2, Gear 2 Neo, Gear S, Gear S2

● TV
– Samsung Smart TVs 2016 and beyond (also part of 2015)

● Fridges
– Samsung Smart Fridge

● … and more

– Open Source - http://source.tizen.org

What is… ?

● Enlightenment
– A window manager, compositor and desktop shell for X11

● Now … also for Wayland

– Window manager and compositor for Tizen
● On both X11 and now Wayland

● EFL
– Enlightenment Foundation Libraries

– The libraries built to make Enlightenment and other applications
● LGPLv2 + BSD Licensing

– Libraries behind Tizen native development and core apps and tools

https://www.enlightenment.org

What is… ?

● Wayland
– Replaces X11

– A new display system protocol

– A new set of client and server libraries to build display servers with

– A set of conventions clients and servers agree to

– Primarily focused on Linux

– Built around the assumption of open drivers
● Using DRM/KMS etc.

– Focus on “every frame is perfect”

– Focus on security and application isolation

– Merges Display Server, Window Manager and Compositor into one

http://wayland.freedesktop.org

Why Wayland?

● It's cool
● Everyone else is doing it

Why Wayland?

● It's cool
● Everyone else is doing it

But really ...

Why Wayland?

● It's cool
● Everyone else is doing it

But really ...

● Wayland is …
– Free of legacy design issues X11 has to maintain

– Smaller codebase than X11

– Easier to get a “perfect UI” in than X11

– Easier to support hardware display features than X11

– More secure than X11

Why Wayland?

● It's cool
● Everyone else is doing it

But really ...

● Wayland is …
– Free of legacy design issues X11 has to maintain

– Smaller codebase than X11

– Easier to get a “perfect UI” in than X11

– Easier to support hardware display features than X11

– More secure than X11

– Less mature and tested than X11

Connect/Display

Wayland vs. X11

X Server

Regular Application
Window Manager

Compositor

Display (or modification) of windows

Wayland vs. X11

X Server

Regular Application
Window Manager

Compositor

Display (or modification) of windows

Map Window

BUFFERS (PIXMAPS)
ALLOCATED HERE

Wayland vs. X11

X Server

Regular Application
Window Manager

Compositor

Display (or modification) of windows

Map Window

BUFFERS (PIXMAPS)
ALLOCATED HERE

Wayland vs. X11

X Server

Regular Application
Window Manager

Compositor

Display (or modification) of windows

Map Window

BUFFERS (PIXMAPS)
ALLOCATED HERE

WINDOW BUFFER ∴
(PIXMAP) SIZES

CONTROLLED HERE

Read Property

Wayland vs. X11

X Server

Regular Application
Window Manager

Compositor

Display (or modification) of windows

Map Window

BUFFERS (PIXMAPS)
ALLOCATED HERE

WINDOW BUFFER ∴
(PIXMAP) SIZES

CONTROLLED HERE

Read Property

Wayland vs. X11

X Server

Regular Application
Window Manager

Compositor

Display (or modification) of windows

Map Window

BUFFERS (PIXMAPS)
ALLOCATED HERE

WINDOW BUFFER ∴
(PIXMAP) SIZES

CONTROLLED HERE

Read Property

Wayland vs. X11

X Server

Regular Application
Window Manager

Compositor

Display (or modification) of windows

Map Window

Read Property

BUFFERS (PIXMAPS)
ALLOCATED HERE

WINDOW BUFFER ∴
(PIXMAP) SIZES

CONTROLLED HERE

Wayland vs. X11

X Server

Regular Application
Window Manager

Compositor

Display (or modification) of windows

Map Window

Read Property

BUFFERS (PIXMAPS)
ALLOCATED HERE

WINDOW BUFFER ∴
(PIXMAP) SIZES

CONTROLLED HERE

Wayland vs. X11

X Server

Regular Application
Window Manager

Compositor

Display (or modification) of windows

Map Window

Read Property

BUFFERS (PIXMAPS)
ALLOCATED HERE

WINDOW BUFFER ∴
(PIXMAP) SIZES

CONTROLLED HERE

Wayland vs. X11

X Server

Regular Application
Window Manager

Compositor

Display (or modification) of windows

Map Window

Read Property

Reparent and add decoration
Finally Show

LOTS OF ROUND TRIPS

BUFFERS (PIXMAPS)
ALLOCATED HERE

WINDOW BUFFER ∴
(PIXMAP) SIZES

CONTROLLED HERE

Wayland vs. X11

X Server

Regular Application
Window Manager

Compositor

Display (or modification) of windows

Map Window

Read Property

Reparent and add decoration
Finally Show

Map Event
Expose Event

LOTS OF ROUND TRIPS

BUFFERS (PIXMAPS)
ALLOCATED HERE

WINDOW BUFFER ∴
(PIXMAP) SIZES

CONTROLLED HERE

KNOW ABOUT BUFFER (PIXMAP)
SIZES LATER

(OFTEN AFTER RENDERING DONE)

Often results in this...
Decoration

Client application content

Undrawn parts of the application
buffer

(resized after rendering began)

Shadows drawn by
WM/Compositor

Background handled
by WM/Compositor

Wayland vs. X11

X Server

Regular Application
Window Manager

Compositor

Rendering updates

Wayland vs. X11

X Server

Regular Application
Window Manager

Compositor

Rendering updates

Render Commands

Often render client- side
then render commands

just “send” update
buffers

Wayland vs. X11

X Server

Regular Application
Window Manager

Compositor

Rendering updates

Render Commands

Often render client- side
then render commands

just “send” update
buffers

Damage Events

Older style
rendering done

server side

Wayland vs. X11

X Server

Regular Application
Window Manager

Compositor

Rendering updates

Render Commands

Often render client- side
then render commands

just “send” update
buffers

Damage Events

Older style
rendering done

server side

Wayland vs. X11

X Server

Regular Application
Window Manager

Compositor

Rendering updates

Render Commands

Often render client- side
then render commands

just “send” update
buffers

Damage Events

Older style
rendering done

server side

Wayland vs. X11

X Server

Regular Application
Window Manager

Compositor

Rendering updates

Render Commands

Often render client- side
then render commands

just “send” update
buffers

Damage Events
Render screen updates

Older style
rendering done

server side

Problems as a result

● Sometimes compositor renders partial content
– Responds to first damage event, and misses others

● Other damages are fixed up next frame

Tearing

Problems as a result

● If rendering client-side, most pixels end up being copied to the target
– Huge amounts of memory bandwidth needed

● ~500MB/sec for 1080p @ 60HZ needing copying
– 2GB/sec for UHD ...

● Even worse if you don't use OpenGL or MIT-SHM extension
● This can easily drop framerates by 20-50%

● Requires display server to have complete drawing subsystem
– A legacy decision for X11 before shared libraries existed

● Allows sharing rendering code via the XServer process

– Must remain pixel-perfect to retain compatibility

Wayland vs. X11

X Server

Regular Application
Window Manager

Compositor

Input events

Input goes direct from server to
applications

WM/Compositor can't modify events
(scale windows, rotate etc.)

Problems here...

● WM/Compositor can't rotate, zoom or transform content
– Input event co-ordinates can only match “original” window geometry

● WM can set what window has focus
– Clients can too

● Leads to possible fighting between clients and WM

● Clients can listen to all input
– Huge security issue – e.g. any app can be a keylogger

● Clients can steal input locking everyone out
– This can affect even screensavers and screenlocks by preventing screenlocks

● The infamous “leave a menu open to prevent a screen locking” bug

Why does Tizen REALLY want Wayland

● Security and client isolation
– Tizen needs to sandbox apps properly

– Apps may be downloaded and not audited or able to be trusted
● May be closed source
● Could contain backdoors or trojans

● If 3rd party apps can't be trusted, they need to be isolated & secure
– Cannot get access to data unless approved by the user

● e.g. Contacts, Photos, Microphone, Camera etc. etc.

– Cannot manipulate other apps

– Cannot listen into input except their own

Why does Tizen REALLY want Wayland

● Far better zero-copy rendering support
– Tizen targets embedded devices which often have very little processing power

● Need to limit copies

Why does Tizen REALLY want Wayland

● Ensure you don't see partial updates
– Tizen is meant to have “commercial quality display”

● Partial updates and tearing are not acceptable

– Major competitors have tear-free display
● Can't compete without at least matching

Why does Tizen REALLY want Wayland

● Massively reduce round-trips
– Performance matters much more on low-end embedded devices

– Users expect almost instant responsiveness
● Wayland can improve startup time of applications on target devices by several 100ms vs X11

– Tests have shown ~400ms improvements

– Memory usage reduced
● Apps can save between ~1 to ~11MB
● Compositor saves ~ 48MB

– All of this while keeping the same (approximately) functionality, look and feel.

Why does Tizen REALLY want Wayland

● Far better designed support for hardware layers
– Embedded hardware often supports several RGBA and YUV overlays

● This allows zero-copy buffer assignment not just for fullscreen apps but for multiple windows
● Regular mid-range hardware often supports 5 layers or more

– Wayland can make better use of this via Surfaces and Sub-Surfaces

– Allows compositor to effectively “turn off” and…
● Wake up to deliver input events to client apps
● Wake up on new buffer display

– Assign application output buffer handles/pointers to the correct display output layer

Why does Tizen REALLY want Wayland

● Rotation
– We need good, clean rotation support for Tizen and Wayland delivers

● Phones, Tablets and Wearables need to rotate
● Even TVs need rotation (to become vertical banner displays)
● We currently do it in X11 with lots of tricks and client-side support

– Wayland can clean this up.

– Opens up possibilities of things like shared “touch tables”
● Multiple people around a single table
● Different pieces of content (windows) at differing rotations per person or content

What Wayland Does

Wayland Compositor

Regular Application

Connect to Server

Create Surface

What Wayland Does

Wayland Compositor

Regular Application

Connect to Server

Create Surface Send Buffer End Transaction

What Wayland Does

Wayland Compositor

Regular Application

Connect to Server

Create Surface Send Buffer End Transaction Send Input Request Frame

What Wayland Does

Wayland Compositor

Regular Application

Connect to Server

Create Surface Send Buffer End Transaction Send Input Send Buffer

End Transaction

Request Frame

Rendering

X11 Rendering

● There is only a single framebuffer
– There is offscreen data like pixmaps – can't be seen (just storage)

● Xserver does the actual rendering to framebuffer or pixmaps
– Clients cannot directly render to these locations

● There are exceptions and hacks – another discussion

– At most clients can:
● Render to a local memory segment and upload
● Render with GPU to OpenGL backbuffer then “swap” to a window to display

● Xserver will “clip” rendering only to the correct output regions
– Invisible parts of windows can avoid beiing drawn entirely

– It is possible to bypass this – it is very anti-social

X11 Rendering

X11 Rendering

X11 Rendering

X11 Rendering

X11 Rendering

X11 Rendering

X11 Rendering (Composited)

● Composited X11 forces rendering to a window to redirect
– Goes to off-screen pixmap that mimics window size

– Pixmap allocated by Xserver automatically on resize

– If window is obscured, all rendering still happens

X11 Rendering (Composited)

X11 Rendering (Composited)

X11 Rendering (Composited)

X11 Rendering (Composited)

X11 Rendering (Composited)

X11 Rendering (Composited)

X11 Rendering (Composited)

X11 Rendering (Composited)

X11 Rendering (Composited)

Wayland Rendering

● Closer to X11 Composited Rendering
– Every Window (Surface) displays a buffer

● Compositor is in charge of desicding how to display the buffer

– Clients allocate and fill buffers
● Can render to buffer any way they like

– Compositor is not involved in rendering and doesn't know how

● Send buffer to compositor when done
– Compositor may need to render to display buffer or assign to hardware scanout

Wayland Rendering

Wayland CompositorRegular Application

Wayland Rendering

Wayland CompositorRegular Application

1 2 3Spare Buffers

Request Frame

Wayland Rendering

Wayland CompositorRegular Application 1

2 3Spare Buffers

Get Buffer

Draw Frame Locally

Wayland Rendering

Wayland CompositorRegular Application 1

2 3Spare Buffers

Send Buffer

Wayland Rendering

Wayland CompositorRegular Application 1

2 3Spare Buffers

Display Buffer

(composite with GPU or
assign to display output)

Wayland Rendering

Wayland CompositorRegular Application 1

2 3Spare Buffers

Request Frame

Wayland Rendering

Wayland CompositorRegular Application 12

3Spare Buffers

Get Buffer

Draw Frame Locally

Wayland Rendering

Wayland CompositorRegular Application

1

2

3Spare Buffers

Send Buffer

Wayland Rendering

Wayland CompositorRegular Application

1

2

3Spare Buffers

Send Buffer

Display Buffer

(composite with GPU or
assign to display output)

Release Buffer

What this means

● Display framerate is generally controlled by compositor
– Can be syncronized to screen refresh

● Sending a buffer is zero-copy
– Application simply sends protocol with the buffer handle, not data

● Buffers may be Posix Shared Memory
– mmap() the buffers and render directly from them or copy to texture or other

destination

● Buffers may be GPU accessible memory
– Compositor can render them by wrapping texture around buffer or assign buffer to

display output hardware if possible

● Result
– Smooth rendering with no tearing and no unnecessary copies

So...

Wayland is better than X11
Wayland is good for Tizen

Transition

How did the transition to Wayland happen

● Had to transition 2 major things
– Client side application toolkit

● Allow applications to display and get input from any Wayland compositor

– Compositor/Window Manager
● Enlightenment uses same toolkit as clients

● Client-side toolkit started first
– Had an existing compositor (Weston) to test against

Client-side

● Ported window layer
– Windows in X11, Windows, OSX etc. - “surfaces” in Wayland

● Ported rendering
– First SHM buffer rendering

● Simpler and relied on no specific driver support
● All rendering already done for other targets – just need a different target

● Ported input
– Need to get Mouse and Keyboard input events

● Are now extending more advanced input devices

● Ported EGL/OpenGL-ES
– Similar to X11 EGL+GL but with surfaces not X11 windows

– EGL driver layer library takes care of buffer sending + management

Compositor-side

● Needed to add display engine for:
– KMS/DRM display (configure display via KMS)

– Software rendering to fill DRM buffers
● Map, fill, display

– EGL+GL for hardware acceleration

● LibInput
– Use this library to get access to input devices

● Send input to specific clients

Compositor-side

● Compositor
– Had to make compositing non-optional

● X11 allowed compositing as an add-on feature
● Implmented by extra plug-in module and X11 infrastructure
● Compositing in core as a non-optional design → the only sane way forward

– Use new engines
● Use X11 engines (Software, GL) for X11 compositing
● Use new DRM and GL DRM modules for software an hardware accelerated display direct to KMS/FB

– Remove/isolate X11 specific code
● Window management code for X11 vs Wayland client management
● X11 code for screen management (Randr)
● X11 code for backlight controls
● … and much more

Results

● Enlightenment now is BOTH:
– X11 WM+Compositor

– Wayland Compositor (direct to KMS/FB)
● (can even be Wayland compositor in-a-window in X11 like Weston)

● EFL using apps
– Can work in X11 AND Wayland

● And Windows, OSX, basic /dev/fb, …

● Tizen can move to Wayland
– Enlightenment is now Tizen's Wayland compositor (Mobile, TV, Wearable ...)

– Most clients use EFL as the toolkit → so clients work too

– Still have lots of special use cases to solve for input and display
● Working on them

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79

