
Embedded Multicore Building Blocks (EMB²)

Easy and Efficient Parallel Programming of Embedded Systems

FOSDEM’16

Tobias Schüle

Siemens Corporate Technology

Page 2

Introduction

“The free lunch is over!”

High computing
power

High energy
efficiency

Low bill
of material

1995 2000 2005 2005 2010 2020...

 No further increase of clock frequencies

due to excessive heat dissipation

 No significant performance improvements

of single processor cores

 Multicore processors are here to stay

 Applications need to leverage parallelism

Page 3

Introduction

Sequential programming is easy (sometimes) …

#define SIZE 1000

main() {

double a[SIZE], b[SIZE];

// Compute a and b ...

double sum = 0.0;

for(int i = 0; i < SIZE; i++)

sum += a[i] * b[i];

// Use sum ...

}

Dot product (sequential)

http://wallpoper.com/wallpaper/formula-mathematics-255330

Public Domain

http://wallpoper.com/wallpaper/formula-mathematics-255330

Page 4

Introduction

… but multithreaded programming is tedious!



















#include <iostream>
#include <pthread.h>

#define THREADS 4
#define SIZE 1000

using namespace std;

double a[SIZE], b[SIZE], sum;

pthread_mutex_t mutex_sum;

void *dotprod(void *arg) {
int my_id = (int)arg;
int my_first = my_id * SIZE/THREADS;
int my_last = (my_id + 1) * SIZE/THREADS;

double partial_sum = 0;
for(int i = my_first; i < my_last && i < SIZE; i++)

partial_sum += a[i] * b[i];

pthread_mutex_lock(&mutex_sum);
sum += partial_sum;
pthread_mutex_unlock(&mutex_sum);

pthread_exit((void*)0);
}































int main(int argc, char *argv[]) {
// Compute a and b ...

pthread_attr_t attr;
pthread_t threads[THREADS];

pthread_mutex_init(&mutex_sum, NULL);
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr,

PTHREAD_CREATE_JOINABLE);

sum = 0;
for(int i = 0; i < THREADS; i++)

pthread_create(&threads[i], &attr, dotprod,
(void*)i);

pthread_attr_destroy(&attr);

int status;
for(int i = 0; i < THREADS; i++)

pthread_join(threads[i], (void**)&status);

// Use sum ...

pthread_mutex_destroy(&mutex_sum);
pthread_exit(NULL);

}

Dot product (POSIX threads)

Barbara Chapman, Gabriele Jost, Ruud van der Pas. Using OpenMP: Portable Shared Memory Parallel Programming. MIT Press, 2007.

Page 5

Introduction

“In 2022, multicore will be everywhere.” (IEEE Computer Society)

Various libraries and language extensions for parallel programming available:

 OpenMP

 Intel’s Threading Building Blocks

 Apple’s Grand Central Dispatch

 …

 Low-power scalable homogeneous and heterogeneous architectures

 Hard real-time architectures with local memory and their programming

 …

Top challenges for multicore (IEEE CS 2022 Report)1

1 H. Alkhatib, P. Faraboschi, E. Frachtenberg, H. Kasahara, D. Lange, P. Laplante, A. Merchant, D. Milojicic, and K. Schwan. IEEE CS 2022 Report.

IEEE Computer Society, 2014. www.computer.org/cms/Computer.org/ComputingNow/2022Report.pdf

Target desktop/server applications

Not suitable for embedded systems

“Multicore has attracted wide attention from the embedded systems community […].

So far, such parallelization has been performed by application programmers, but it is

very difficult, takes a long time, and has a high cost.”

http://www.computer.org/cms/Computer.org/ComputingNow/2022Report.pdf

Page 6

Introduction

Embedded Multicore Building Blocks (EMB²)

Domain-independent C/C++ library and

runtime platform for embedded multicore

systems.

Operating system / hypervisor

Dataflow

Application

Hardware

Containers

Task management (MTAPI)

Algorithms

Base library (abstraction layer)

EMB² at a glance

Key features:

 Easy parallelization of existing code

 Real-time capability, resource awareness

 Fine-grained control over core usage

(task priorities, affinities)

 Lock-/wait-free implementation

 Support for heterogeneous systems

 Independence of hardware architecture

(x86, ARM, …)

E=mb2

E=mc2x
b

Page 7

Embedded Multicore Building Blocks

Components

Operating system

Dataflow

Application

Hardware

Containers

Task management (MTAPI)

Algorithms

EMB2

Base library (abstraction layer)

Page 8

Embedded Multicore Building Blocks

Multicore Task Management API (MTAPI)

MTAPI in a nut shell

 Standardized API for task-parallel

programming on a wide range of hardware

architectures

 Developed and driven by practitioners of

market-leading companies

 Part of Multicore Association’s ecosystem

(MRAPI, MCAPI, …)

Contributing members:

Working group lead

Tasks

Tasks Queues Heterogeneous Systems

 Shared memory

 Distributed memory

 Different instruction

set architectures

Page 9

Embedded Multicore Building Blocks

Heterogeneous systems

TI OMAP5430 Xilinx Zynq UltraScale MPSoC

© Texas Instruments © Xilinx

 High performance using specialized hardware (DSPs, FPGAs, etc.)

 Low power consumption  reduced heat dissipation

 Complex programming due to different architectures (lack of abstraction)

Key characteristics

Page 10

Embedded Multicore Building Blocks

MTAPI for Heterogeneous Systems (1)

Node Node Node Node

tasks

CPU

core

memory

GPU

memory

DSP
CPU

core

CPU

core

CPU

core

memory

sched. / lib. OS 1 OS 2

MTAPI runtime system (optionally MCAPI / MRAPI)

MTAPI tasksMTAPI tasks

MTAPI application

MTAPI tasks

Domain

Page 11

Embedded Multicore Building Blocks

MTAPI for Heterogeneous Systems (2)

 Job: A piece of processing implemented by an action. Each job has a unique identifier.

 Action: Implementation of a job, may be hardware or software-defined.

 Task: Execution of a job resulting in the invocation of an action implementing the job associated

with some data to be processed.

Task Job Action 2

Action 1

Action n

accomplishes

implemented by

(e.g., CPU code)

(e.g., OpenCL code)

MTAPI

E
x
te

n
s
io

n
 A

P
I

Plugin 1

Plugin 2

Plugin n

Example: FFT …

Page 13

Embedded Multicore Building Blocks

Components

Operating system / hypervisor

Dataflow

Application

Hardware

Containers

Task management (MTAPI)

Algorithms

EMB2

Base library (abstraction layer)

Page 14

Embedded Multicore Building Blocks

Algorithms and Task Affinities / Priorities

std::vector<int> v;

// initialize v ...

embb::algorithms::ForEach(v.begin(), v.end(),

[] (int& x) {x *= 2;}

);

Parallel for-each loop

No need to care of

 task creation and management

 number of processor cores

 load balancing and scheduling

 …

// Create execution policy

ExecutionPolicy policy(true, 0);

// Remove worker thread 0 fromaffinity set

policy.RemoveWorker(0);

// Start high priority tasks in parallel on

// specified worker threads (cores)

Invoke([=](){HighPrioFun1();},

[=](){HighPrioFun2();},

policy);

Function invocation

1st argument: affinity set (true = all)

2nd argument: priority (0 = highest)

Example: worker thread (core) 0 is

reserved for special tasks

Pass policy as optional parameter

Page 15

Embedded Multicore Building Blocks

Components

Operating system

Dataflow

Application

Hardware

Containers

Task management (MTAPI)

Algorithms

EMB2

Base library (abstraction layer)

Page 16

Embedded Multicore Building Blocks

Dataflow Framework

 Embedded systems frequently process continuous streams of data such as

 sensor and actuator data

 network packets

 images

 …

 Such applications can be modeled using dataflow networks and executed in parallel

T F

T F

... ...

MTAPI Task Trees

Stream processing

Page 17

Embedded Multicore Building Blocks

Components

Operating system

Dataflow

Application

Hardware

Containers

Task management (MTAPI)

Algorithms

EMB2

Base library (abstraction layer)

Page 18

Embedded Multicore Building Blocks

Container Requirements (The Three Commandments)

1. No race conditions in case of concurrent accesses  Thread safety

2. No unpredictable delays in case of contention  Progress guarantee

3. No dynamic memory allocation after startup  Preallocated memory

P0

Pm

C0

Cn

 

Queue

ConsumersProducers

Implementation Thread

safety

Progress

guarantee

Preallocated

memory

std::queue
QQueue (Qt)  - 

std::queue
QQueue (Qt)   

boost::lockfree::queue
tbb::concurrent_queue   / ?  / ?
embb::LockFreeMPMCQueue
embb::WaitFreeSPSCQueue   

+ Mutex

Page 19

Embedded Multicore Building Blocks

Progress Guarantees

Starvation-free

Lock-free

Clash-free

Wait-free

Obstruction-free

Deadlock-free

At least one thread always

makes progress

All threads always

make progress

M. Herlihy and N. Shavit. “On the nature of progress”. International conference on Principles of Distributed Systems

(OPODIS'11), Springer, 2011.

Page 22

Embedded Multicore Building Blocks

Code Quality

Formal verification (partially)

Static source code analysis

Rule checker (cppcheck)

Continuous integration

Unit tests (> 90% statement coverage)

Coding guidelines (Google’s cpplint)

Zero compiler warnings

Workflow-driven design/code reviews

Agile

development

process

Page 23

Embedded Multicore Building Blocks

Performance Comparison

Measurements from the University of Houston show the efficiency of EMB² (green bars):

P. Sun, S. Chandrasekaran, S. Zhu, and B. Chapman. Deploying OpenMP Task Parallelism on Multicore Embedded Systems with MCA Task APIs.

International Conference on High Performance Computing and Communications (HPCC), IEEE, 2015.

Page 24

Embedded Multicore Building Blocks

Open Source Software

https://github.com/siemens/embb/

BSD 2-clause license

Feedback and contributions

are very welcome!

Thank you!

https://github.com/siemens/embb/

