Leveraging Docker in Automotive projects based on AGL/GENIVI

Stéphane Desneux
CTO at IoT.bzh
<sdx@iot.bzh>
IoT.bzh

- Specialized on Embedded & IoT
- Contributing to AGL Project for Renesas
- Expertise domains:
 - System architecture
 - Security
 - Application Framework
 - Graphics & Multimedia
 - Middleware
 - Linux Kernel
- Located in Brittany, France
Agenda

• Light virtualization
• Containers for BSP builds
• Containers for Applications SDK
• Containers for CI & LTS
• Demo: AGL SDK for Renesas Porter board
• Limitations & Future enhancements
• Q&A
Light Virtualization [LV]
Light Virtualization

- Opposed to "Full Virtualization" which emulates a full machine (hardware + OS)
- A light virtual machine is also called a "container": this is a kind of `chroot(2)` with some extra features
- A container runs its own processes based on its own binaries and libraries. But it relies on the Linux Kernel running on the host machine.
- Uses Linux `namespaces` to isolate the virtual system from the host system
 see `unshare(2)`
LV: what's hype?

Some software related to LV:

- Docker
- Rocket (CoreOS)
- Open Container Initiative
- OpenVZ
- LXC / LXD (Ubuntu)
LV: historical usages

• Historically used for easy deployment of Cloud services
 – very fast startup (compared to full virtualization)
 – low overhead (less memory used, less storage)
 – better load balancing
 – optimized hardware resources usage

• Some security models also use containers to provide isolation for multiple resources (filesystem, network stack, processes, uids/gids ...)

Containers for BSP builds
Context

- Goal: build and maintain the **BSP** (Board Support Package) for a selected target platform/board
- BSP is based on **Yocto Project / Poky** and the main build tool is **bitbake**
- Integration team is responsible for **writing recipes** to build source packages and generating **binary packages** and **images**
Recipe for a good Base Container

• Take a **supported OS** for Yocto/Poky

 AGL 1.0 based on Poky 1.7

 → use Debian 7.4 which is supported

• Add the **dependencies** for bitbake

 → gcc, binutils, python ...

• You get a Base Container which can be used to build **any Yocto based distribution**

• **Update** from time to time when required
Build'em all

- Take the **base container** (or a previous snapshot container)
- Add (or update) your **layers** according to current snapshot:
 → poky, openembedded, meta-foo …
- Reuse the **caches** if available from a previous container
 → download cache
 → build cache (sstate-cache)
- **Build** a full image and/or SDK with bitbake:
 → move the results outside of the container
 → serve hot
- The new container is now the new “**snapshot container**”
Share the Snapshot Container

• **Commit and share** this container which includes:
 - Layers
 - Packages sources in download cache
 - Build cache (sstate-cache)

• Use for any kind of build that implies **bitbake**: binary packages, images, SDK ...
 - ready to use by any **platform developer**
 - useful in CI to **validate new patches**
Benefits

- **Stability**: A container allows to create simple, unbiased build environments which are officially supported independently of the host machine.

- **Isolation**: no more bugs caused by local conditions (specific host, OS, local package etc.) even if build recipes may still be buggy.

- **Uniformity**: the container used to build a snapshot can be shared across a community to allow anyone to rebuild binaries in the same conditions with deterministic results.

- **Performances**: optionally, the snapshot container may contain pre-built, shared caches to speed up most builds.

- **Time to market**: out-of-the-box solution, which makes the integration easier
Containers for Applications SDK
Context

- **Application developer** creates native or HTML5 applications on top of the BSP for a specific board.

- Yocto Project / Poky generates the base toolkit to **cross-compile** sources using the headers and libraries of a target image.

- Developers often use an **integrated development environment** (IDE) to build, run and debug efficiently.
Building the SDK Container

• Start with a good distro container
 → for AGL SDK, we took Debian 8.x
• Install the **BSP SDK** (cross-compiler, headers, libraries, sysroot) produced by the BSP Container
• Install **Eclipse IDE and plugins**, like the Yocto ADT plugin which allows cross-build and remote debugging on a target board
• **Commit** the new container: you get a SDK Container, which is ready to use by application developers.
Benefits

- **Synchronized with BSP**: the SDK container depends on the BSP and applications are built with the same tools as the ones used to build the BSP.
- **Uniformity**: all developers can share the same environment
- **Ubiquity**: the SDK container may run on the Cloud, on-premises, on developers hosts ...
- **Cost & Time to market**: applications can be developed faster and ready earlier.
Containers for Continuous Integration [CI] & Long Term Support [LTS]
CI: Deployment

• Easy **deployment** of predefined components:
 – Jenkins container
 – Gerrit container
 – ...
• **Failover** may be easier to manage
• **Replicate** CI infrastructure locally
CI: Validation builds

- Builds are required to **validate** new unmerged patches.
- **BSP Containers** can be used to perform those builds easily:
 - Instantiate the container
 - Adjust layers revisions to include the patch to test
 - Run the build
 - Optional: automatically run sanity tests on the generated image
- **Accept or reject** patch (or simply report success and errors) based on results
CI: QA tasks

- **QA Plans** can be implemented with containers, to get more deterministic results
 - Results don't depend on the host platform running the tests
- Have a base QA container with essential QA tools
- Create **QA containers** based on QA plans
- Run the appropriate QA Container(s) on each new snapshot/target platform
- On AGL: the JTA QA framework uses Docker containers to run tests
Long Term Support

• Projects with long life span require the ability to **backport fixes** on old releases:
 – Automotive: **10 to 20 years support** to expect
 Average cars age in Europe is 9.8 years
 – Even older for nuclear or military projects

• **Open Container Initiative**: an open format for containers will help to get the required life time for a container format and to get the ability to run it many years after its creation
Demo with AGL SDK for Renesas Porter board
Renesas Porter Board

- R-Car M2 SoC
 - ARM Cortex-A15
 - Dual Core 1.5GHz
 - Multimedia Engine
 - GPU PowerVR SGX544MP2
- 2GB DDR3
- 2 Flash Mem Chips
- Ethernet
- Storage: SATA, SD, microSD
- Video: Analog In, HDMI Out
- Audio: In/Out
- USB 2.0
- CAN Transceiver
AGL SDK Initialization

• Load the SDK Docker image:

```bash
docker pull docker.iot.bzh/agl/snapshot-stable-sdk:1.0
```

• Instantiate a new SDK Container named 'aglsdk':

```bash
docker run --publish=3389:3389 --detach=true \\
--privileged \\
--hostname=aglsdk --name=aglsdk \\
-v /sys/fs/cgroup:/sys/fs/cgroup:ro \\
docker.iot.bzh/agl/snapshot-stable-sdk:1.0
```

• Open a new RDP session on localhost:3389

```bash
xfreerdp -u devel -p devel -g 1200x700 localhost
```
Connect through RDP

RDP session starting

Eclipse IDE Initial Screen
Build a C/C++ program

Cross-compilation using Yocto & Eclipse
Remote debugging on Eclipse using SSH and gdbserver
Limitations
Future enhancements
Limitations

• SDK Container
 – UID mapping in Docker is not supported yet
 Persistent storage is not easy to setup and an external volume is not easy to share due to permissions conflicts
 – Eclipse IDE not in latest version
 – Target device access is more difficult for debug

• BSP Container
 – Docker and device mapping under Windows
 – loopback access not possible to flash SD cards
Future Enhancements

• BSP Container
 – Integrate features from Yocto 2.x
 – Optimize caches handling
 – Reduce storage size

• SDK Container
 – Switch to Web mode for IDE
 Use next generation Eclipse Che
 – HTML5 Applications support
 – TCF Support for remote deploy & debug
 – Network boot of target boards
Q&A

Gulf of Morbihan, south of Brittany, France
Links - AGL

- Yocto Project: www.yoctoproject.org
- Automotive Linux: www.automotivelinux.org
- AGL 1.0 “Albacore” Release
 https://download.automotivelinux.org/AGL/release/albacore/1.0/
- SDK Kickstart
- Eclipse IDE: eclipse.org
Links - Containerization

- Docker: docker.com
- LXC / LXD: linuxcontainers.org
- Open Container Initiative: opencontainers.org
- OpenVZ: openvz.org
- Rocket: coreos.com