
Daala’s advanced coding techniques
FFmpeg implementation and how they fit in AOMedia’s codec

Rostislav Pehlivanov
atomnker@gmail.com

2016-01-30





Some things happened...

AOMedia’s codec has begun development
https://chromium.googlesource.com/webm/aom/

https://chromium-review.googlesource.com/#/q/project:webm/aom

https://chromium.googlesource.com/webm/aom/
https://chromium-review.googlesource.com/#/q/project:webm/aom


Some things happened...

AOMedia’s codec has begun development
https://chromium.googlesource.com/webm/aom/

https://chromium-review.googlesource.com/#/q/project:webm/aom

Daala’s development will slow down

https://chromium.googlesource.com/webm/aom/
https://chromium-review.googlesource.com/#/q/project:webm/aom


Some things happened...

AOMedia’s codec has begun development
https://chromium.googlesource.com/webm/aom/

https://chromium-review.googlesource.com/#/q/project:webm/aom

Daala’s development will slow down

VP9’s codebase has been chosen as a starting point

https://chromium.googlesource.com/webm/aom/
https://chromium-review.googlesource.com/#/q/project:webm/aom


Some things happened...

AOMedia’s codec has begun development
https://chromium.googlesource.com/webm/aom/

https://chromium-review.googlesource.com/#/q/project:webm/aom

Daala’s development will slow down

VP9’s codebase has been chosen as a starting point

Xiph and Cisco’s teams have started to implement some of
their coding tools

https://chromium.googlesource.com/webm/aom/
https://chromium-review.googlesource.com/#/q/project:webm/aom


Some things happened...

AOMedia’s codec has begun development
https://chromium.googlesource.com/webm/aom/

https://chromium-review.googlesource.com/#/q/project:webm/aom

Daala’s development will slow down

VP9’s codebase has been chosen as a starting point

Xiph and Cisco’s teams have started to implement some of
their coding tools

Daala might become an image-only codec

Hopefully with support for a lossy alpha channel

https://chromium.googlesource.com/webm/aom/
https://chromium-review.googlesource.com/#/q/project:webm/aom


Why bother?

Google succeeded in quickly pushing their VP9 codec though
Chrome(ium)

Other browsers were slow to follow (have to ship another
library)

libvpx had speed issues

FFVP9 was not ready on time (Firefox just switched to using
it)

...leading to fragmentation and user agent checks for webm
support



The idea

Have support in libavcodec for AOMedia/NetVC/Daala on
bitstream freezing

Keep maintaining it and improving it until the reference
implementation is stable

That way any browser wishing to have support would only
need to wait until next stable release/cherry pick.



What a normal DCT based codec does

Encoder:

Splits image into blocks

Does a forward DCT transform on all the blocks

Quantized the resulting coefficients (possibly using vector
quantization)

Transmits the quantized coefficients

Decoder:

Receives and dequantized coefficients

Applies an inverse DCT transform

Applies filtering (e.g. deblocking)



What a normal DCT based codec does

Encoder:

Splits image into blocks

Does a forward DCT transform on all the blocks

Quantized the resulting coefficients (possibly using vector
quantization)

Transmits the quantized coefficients

Decoder:

Receives and dequantized coefficients

Applies an inverse DCT transform

Applies filtering (e.g. deblocking)

Daala does pretty much everything differently...



Daala’s unique coding tools

Entropy encoding

Range coding
Multi symbol
Adaptive

Screen coding

Uses wavelet transforms for blocks
Sometimes uses Unary coding for DC coefficients

Perceptual Vector Quantization

Activity masking

Lapped transforms

Deringing filter

Bilinear blur for I-frames



Daala’s entropy encoder

Unconventional - splits coding of uncompressable raw bits
away

Appends the raw bits buffer at the end of the stream

Read/written sequentially from end to start

Avoids the patent hell of arithmetic coding

Codes multiple symbols



Daala’s use of wavelets for blocks

Uses a Haar wavelet transform to compress the coefficients

Only used on fully lossless frames currently

Possibility to be used in a mixed block transforms (since the
overlap filter is invertible)

Very simple (able to write a decoder in around 500 lines)



Perceptual Vector Quantization

Splits coefficients into bands (similar to audio)

’Synthesizes’ coefficients

Coefficients represented by a vector
Each coefficient is normalized e.g. [0.0f, 1.0f]
Multiplied by the vector gain (transmitted separately)

Uses standard zigzag coding for the bands

Can accept ’reference’ coefficients to use as a base



Perceptual Vector Quantization - Ref path

Reduces coefficient delta by using the reference provided

Uses the householder reflection to align the ref to an axis
(flips sign)

Encoder codes the difference between the current vector and
the reference

Used for Chroma from Luma

Used for Intraprediction

Used for Interprediction

Does a forward transform on the reference frame during
decoding

Can potentially be used for any other kind of prediction (e.g.
alpha from luma)



Perceptual Vector Quantization - Activity Masking

Not signalled - only a single global flag to enable

Acts on larger blocks (4x4 have too limited quantization)

Increases quantization on blocks with contrast (impercievably)

Gives more bits to blocks with low contrast



Perceptual Vector Quantization - Without Activity Masking



Perceptual Vector Quantization - With Activity Masking



Lapped transforms

Makes the image appear more blocky

’Resizes’ the block + some outside zone inside the block



Lapped transforms



Lapped transforms



Deringing

Conditional Replacement Filter

Ringing will usually manifest itself as noise above the
quantization step

Picks a center pixel and scans every pixel around it

If a pixel is deviating above the quantization step, replace it
with the value of the center pixel.



Deringing



Deringing



Deringing



FFmpeg Daala decoder

Can decode Daala I-frames only

Some code written from scratch, most is rewritten libdaala

Still no support for the deringing filter

Still some artifacts with 64x64 transforms

Fully templated DSP

But nearly bit identical



The End
Questions?


