
This	is	the	story	about	what	happens	if	you	do	random	experiments,	because	you	one	
day	wonder	if	things	in	your	par8cular	area	of	business	aren’t	exactly	as	hard	they	
seem.	This	is	a	talk	about	a	proof	of	concept	I	and	some	others	did	called	‘cuteboot’,	
a	means	to	stuff	your	own	Qt	QML	UX,	or	other	types	of	UI,	on	top	of	most	Android	
devices.	Originally,	I	wanted	to	give	a	live	demo	of	this,	as	noted	in	the	talk	
descrip8on	but	unfortunately	murphy’s	law	kicked	in	and	I	managed	to	bust	up	the	
USB	port	of	my	demo	device,	so	you’ll	have	to	take	my	word	that	it	does	what	it’s	
supposed	to	–	or	will	enable	aKer	the	project	has	matured	a	bit.	

1	



So	quickly	something	about	what	I’ve	been	doing	or	am	doing	–	I’m	Ex-CTO,	R&D	of	
Jolla,	a	company	that	has	made	the	Jolla	phone	and	a	very	rare	tablet	and	an	
alterna8ve	glibc-based	mobile	opera8ng	system	called	SailfishOS.	SailfishOS	was	built	
on	another	project	I	made,	called	Mer	Core,	which	is	a	collec8on	of	soKware	
packages	making	up	a	mobile	opera8ng	system	core.	I	also	made	a	solu8on	called	
‘libhybris’	which	enables	glibc-based	systems	to	leverage	Android	drivers	w/	Wayland	
and	other	things	that	projects	like	SailfishOS,	Asteroid,	Ubuntu	Touch	etc	are	using	as	
well.	And	as	a	last	thing,	I’m	now	independent,	doing	mobile	linux	consul8ng	to	
finance	my	work	into	projects	like	this	one	on	the	side	–	and	I’m	available	for	
contrac8ng,	if	anybody	is	interested	in	what	I	could	do	for	you	w/	cuteboot	or	other	
things	in	the	mobile	space.	

2	



Given	my	project	history,	you	may	wonder	why	on	earth	I’d	embark	on	another	semi-
mobile	OS	like	project	Iread	a	par8cular	philosophical	paper	by	David	Chalmers&	
Andy	Clark	8tled	“the	extended	mind”,	which	proposi8ons	that	the	reach	of	the	mind	
need	not	end	at	the	boundaries	of	skin	and	skull,	that	tools,	instruments	and	other	
props	can	under	certain	condi8ons	also	count	as	proper	parts	of	our	minds.	My	
phone,	personally,	is	like	a	extended	memory	and	a	digital	augmenta8on	to	me.	And	
these	thoughts	make	me	think	that	I’m	and	we’re	not	in	control	of	our	minds	–	
because	we	don’t	effec8vely	control	our	devices.	And	this	has	haunted	me	ever	since	
I	read	this	paper.	
While	I’ve	worked	on	solu8ons	that	enable	us	to	build	and	have	glibc-based	systems	
on	mobile	devices,	it’s	s8ll	way	too	hard,	prone	to	showstoppers,	compared	to	the	
speedy	execu8on,	despite	the	strong	usage	of	duc]ape,	that	essen8ally	closed	and	
Google-controlled	devices	are	ge^ng	put	into	the	market.	That	ba]le	is	uphill	and	
very	expensive,	albeit	not	impossible	–	and	right	now,	we’re	far	from	winning.	We	
should	instead	of	thinking	about	technology	choices	like	glibc/dbus/wayland/etc	
versus	bionic/binder/surfaceflinger/etc,	think	about	our	consumer,	or	even	human	
freedom	versus	our	lives	and	our	data	being	controlled	by	big	companies;	where	we	
can	actually	make	a	real	impact	on	a	much	more	equal	foo8ng.	Is	a	ba]le	of	the	
technology	of	choice	more	important	than	that	of	the	ba]le	of	freedom	of	our	
minds?		

3	



But	to	get	more	technical,	what	exactly	is	the	opportunity?	The	Android	market	has	
thousands	upon	thousands	devices,	on-market	or	available	as	reference	devices	
available	from	manufacturers	that	at	reasonably	low	prices	can	be	produced	with	any	
system	you’d	want	to	put	on	it.	As	long	as	it	derives	somewhat	from	the	exis8ng	
soKware	for	the	device	and	can	be	applied	easily	on	top	of	typical	AOSP-based	source	
code	tree,	the	barebones	Android	w/	hardware	adapta8on	–	be	too	distant	and	their	
manufacturing	processes	break	down	and	your	manufacturing	price	+	8me	to	market	
rises.	For	the	whitelabel	or	aKermarket	devices,	many	of	them	comes	with	open	
bootloaders	and	a	boot	img	(kernel	and	initrd)	available,	but	usually	without	any	
source	code	available,	maybe	some8mes	a	kernel	source	but	almost	never	a	
reasonably	full	AOSP	tree	–	so	being	content	with	having	an	Android	device	just	
because	you	could	hack	the	AOSP	tree	is	just	not	good	enough	(some	excep8ons	
apply	like	Nexus	devices	but	even	they	don’t	run	always	run	pure	AOSP	out	of	the	
box..)	In	addi8on	to	that,	it’s	possible	to	work	with	manufacturers	since	their	margins	
are	ge^ng	hit	the	same	and	any	kind	of	real	differenta8on	in	phone	space	can	ma]er	
--	Since	every	Android	phone	looks	the	same.	What	If	we	could	leverage	all	this	to	put	
our	own	UX	experiences	on	them,	making	us	able	to	control	our	interac8on	and	
informa8on	flow,	effec8vely	freeing	our	minds?	There’s	obvious	other	technical	
benefits,	too,	like	untrad8onal	products	made	from	reference	designs.	

4	



Now,	what	is	the	usual	way	that	people	deal	with	this?	They	make	a	Android	ROM.	
Take	AOSP,	patch	and	guesswork	enough	about	the	system	on	the	device,	add	binary	
blobs	on	top	un8l	it	works.	However,	It’s	oKen	with	bad	results,	broken	hardware	
support	and	other	quirks	+	the	por8ng	effort	takes	significant	8me.	Why	is	this?	
Because	most	non-published	device	vendor	trees	are	patched	right	into	hell	with	
strange	workarounds.	Not	to	men8on	not	always	delivering	right	kernel	source	code.	
	

5	



So	what	if	instead	of	trying	to	build	a	ROM,	we	reuse	the	exis8ng	system	on	the	
device?	Like	for	example,	Removing	every	APK,	boo8ng	up	only	essen8ally	services,	
not	boo8ng	up	the	Android	UX.	And	instead	running	our	own	Qt/QML	or	otherwise	
experience	against	SurfaceFlinger,	the	Android	compositor?	What	if	we	could	make	it	
the	ul8mate	ROM	that	you	could	within	10-20	minutes	adapt	to	a	new	device?	

6	



So,	how	is	this	done	in	prac8ce?	First	thing	you’d	want	to	do	is	to	stop	Android	from	
boo8ng	up	anything	but	it’s	minimal	set.	But	how	do	you	actually	strip	a	Android	
system	bare?	It	takes	a	bit	of	Jenga-style	development,	as	in:	guess	a	lot	and	keep	
removing	things	un8l	everything	falls	apart	–	which	you	can	witness	when	that	
happens	in	the	logs	over	ADB	and	ps	aux	in	adb	shell.		And	some	modifica8on	and	
patching	of	the	boot	image	to	customize	the	startup	process.	Android	already	
provides	enough	knobs	to	tune	to	make	this	easy.	In	the	end,	you	end	up	with	a	set	of	
simple	instruc8ons	to	modify	the	state	of	an	Android	device	–	replace	boot.img,	
delete	a	few	things	in	the	system	directories,	change	a	few	se]8ngs.	And	bam,	you	
have	a	nice	200mb	RAM	middleware	that’s	fully	func8onal	with	telephony,	wifi,	3g,	
bluetooth,	nfc,	composi8on,	mul8media	and	camera	that	you	can	build	on	instead	of	
trying	to	re-create	on	your	own.	200mb	RAM	is	before	tuning	the	Dalvik/ART	memory	
usage,	which	can	probably	be	significantly	reduced.	

7	



We	found	when	we	started	hacking	at	this	proof	of	concept,	that	the	most	of	the	
support	to	run	Qt	on	top	of	‘bare’	android	was	already	in	Qt,	where	we	only	had	to	
patch	it	a	bit	to	work	with	a	bit	more	modern	Android	NDK.	Then	it	was	a	ma]er	of	
using	the	right	configure	op8ons	and	the	right	cross	compilers	from	AOSP	along	with	
a	bit	of	Makefile	glue,	to	get	it	building.	Naturally,	a	bare	Qt	isn’t	terribly	interes8ng,	
it’ll	work,	build,	but	it	can’t	show	anything	on	the	screen.	SurfaceFlinger	access,	as	in,	
manually	crea8ng	windows	w/o	the	involvement	of	the	Dalvik	VM	is	not	something	
that’s	available	as	headers	or	even	libraries	in	the	Android	NDK	–	so	you	end	up	
having	to	build	against	a	semi-built	AOSP	source	tree	which	has	the	right	headers.	
Because	of	the	Qt	QPA	system	and	general	pluginability	of	Qt	we	can	make	those	
parts	hardware	adapta8on	specific.	The	second	problem	is	however	that	while	that	
we	have	a	lot	of	nice	services	running	in	the	Android	middleware,	which	theore8cally	
is	described	in	AIDL	interface	descrip8on	files	that	we	could	build	C++	bindings	for…	
but	in	prac8ce	most	of	them	have	a	lot	of	“Parcelabes”	which	means	“i’ll	just	write	
the	serializa8on	code	in	java	manually”	which	is	naturally	a	pain	in	the	ass	if	we’d	like	
to	interface	with	those	from	C++.	So	the	obvious	choice	is	to	make	a	java	bridge		that	
we	communicate	with	over	IPC,	but	the	problem	is	that	adding	a	privileged	APK	to	an	
Android	system	when	you	don’t	have	the	platorm	key,	which	you	usually	don’t,	
requires	a	re-cryptographic	signing	of	the	system	framework	jars	and	other	privileged	
apks	with	a	new	platorm	key.	

8	



And	just	to	help	understand	the	power	of	having	this	middleware	available,	this	is	an	
example	from	the	AIDL,	interface	descriptor	for	the	WiFi	Manager..	And	you	can	
imagine	that	being	able	to	access	those	func8ons	makes	it	quite	easy	to	do	a	quick	
QML	applica8ons	that	does	the	things	you	want.	Similar	AIDLs	are	available	for	other	
very	useful	services.	

9	



Now	you’re	naturally	wondering	what	cuteboot	itself	brings	to	the	game	–	we	now	
have	a	middleware,	but	naturally,	the	system	doesn’t	do	a	lot.	So	what	we	essen8ally	
bring	with	cuteboot	is	set	of	source	code	repositories	and	build	scripts,	not	currently	
very	good	ones,	enabling	us	to	build	Building	Qt	+	Qt	Declara8ve	etc	against	a	typical	
Android	NDK	sysroot	w/o	making	to	use	JNI	(and	hence	having	to	be	an	Android	APK)	
and	hardware	adapta8on	plugins	against	the	AOSP	source	code	–	which	can	be	
generic,	and	not	have	to	exactly	match	the	system	running	on	the	device.	This	is	
because	we	only	use	the	header	files	effec8vely.	Doing	it	in	this	manner	makes	us	
able	to	perhaps	build	a	central	(and	signed)	Qt/Qt	Declara8ve	build	shared	across	
many	devices,	and	add	hardware	adapta8ons	bits,	so	a	main	Qt-based	UX	can	evolve	
independently.		

10	



So,	naturally,	this	is	currently	a	proof	of	concept.	But	we	want	to	take	it	further,	and	
during	February	we’ll	start	doing	these	things..	Actually	make	the	Java	bridge,	make	it	
work,	installing	cuteboot	into	/system	instead	of	our	custom	cache	par88on	like	we	
do	currently,	and	make	it	possible	to	easily	install	Cuteboot-based	systems	to	any	
device	like	you’d	install	any	other	ROM,	through	.zip	file	based	recoveries.	If	we’re	
lucky,	we	get	into	a	situa8on	where	we	can	do	a	central	build	for	a	project,	and	then	
a	.zip	file	on	top	that	adds	the	hardware	adapta8on.	This	could	prove	useful	to	have	
OS	releases	in	two	different	paces.	

11	



And	the	result	would	be	that	making	the	founda8on	for	your	device	would	simply	be	
to	get	a	boot	img,	patch	it,	build	qt,	build	a	java	bridge,	re-sign	your	APKs	on	your	
device..	And	then	spend	more	8me	building	your	dream	experience.	Could	this	be	
easier?	

12	



And	naturally,	you	will	be	wondering,	OK,	so,	I	now	have	the	ability	to	control	the	
user	experience	of	my	device;	but	what	about	the	fact	I	now	have	a	huge	amount	of	
closed	source	on	my	device,	that	is,	the	Android	system?	The	answer	is	to	buy	
devices	and	support	those	companies	that	give	devices	with	open	bootloaders,	
flashers,	available	firmware	images,	a	full	Android	source	tree	available	for	download	
+	perhaps	a	8ny	bit	of	vendor	blobs,	that	can	be	made	into	a	fully	func8onal	OS,	so	
you	can	patch	the	Android	middleware	for	security,	etc.	One	such	example	that	I	
know	of,	is	the	Fairphone	2.	And	as	last	thing,	on	my	own	personal	wishlist,	a	device	
where	you	can	unlock	and	re-lock	your	bootloader,	add	your	own	signing	keys,	to	
secure	up	your	device	from	Evil	Maid	a]acks.	

13	



Naturally,	you	might	wonder	what	use	I	personally	would	have	for	cuteboot	and	this	
is	a	bit	of	a	moonshot	project	I	call	the	Human	Web	project,	a	bit	of	con8nua8on	of	
the	philosophical	thoughts	in	the	start	of	this	talk.	We’re	a	bunch	of	people	who	are	
unhappy	about	the	direc8on	mobile	devices	are	going	and	the	unacceptable	
surveillance	and	centraliza8on	of	services.	We	build	on	awesome	technologies	such	
as	QML,	IPFS,	Ethereum,	Tor,	CRDTs,	Containers/Sandboxing	and	so	on	to	do	this.	
What	we	seek	to	do	is	to	empower	everybody	with	the	peer-to-peer	ability	to;	…	So	if	
you’re	interested	in	how	a	very	different	take	on	user	experience	and	
decentraliza8on	could	be	like	on	our	mobile	devices	and	desktop	alike,	feel	free	to	
join	#thehumanweb	on	irc.freenode.net	and	join	in	the	discussions	and	possibly	
contribute	to	the	open	source	project.	All	kinds	of	contribu8ons	welcome.		

14	



Thanks	for	listening.	If	you’d	like	to	play	around	with	cuteboot,	I	suggest	your	first	
stop	is	#cuteboot	on	IRC,	on	freenode,	to	get	guidance	on	how	to	proceed,	and	then	
go	on	from	there;	ideally	helping	documen8ng	as	you	go	on.	Android	4.4	devices	and	
up	are	preferred	but	older	versions	also	possible.	

15	


