cuteboot
https://github.com/cuteboot
Hcuteboot @ irc.freenode.net

This is the story about what happens if you do random experiments, because you one
day wonder if things in your particular area of business aren’t exactly as hard they
seem. This is a talk about a proof of concept | and some others did called ‘cuteboot’,
a means to stuff your own Qt QML UX, or other types of Ul, on top of most Android
devices. Originally, | wanted to give a live demo of this, as noted in the talk
description but unfortunately murphy’s law kicked in and | managed to bust up the
USB port of my demo device, so you'll have to take my word that it does what it’s
supposed to — or will enable after the project has matured a bit.



About me

Ex-CTO, R&D of Jolla
* Ex-maemo.org distmaster
Project architect of Mer Core (basis of SailfishOS)

Author of libhybris (used in SailfishOS, Asteroid,
Ubuntu Touch, Luna, etc..)

Available for Mobile Linux consulting

So quickly something about what I’'ve been doing or am doing — I’'m Ex-CTO, R&D of
Jolla, a company that has made the Jolla phone and a very rare tablet and an
alternative glibc-based mobile operating system called SailfishOS. SailfishOS was built
on another project | made, called Mer Core, which is a collection of software
packages making up a mobile operating system core. | also made a solution called
‘libhybris” which enables glibc-based systems to leverage Android drivers w/ Wayland
and other things that projects like SailfishOS, Asteroid, Ubuntu Touch etc are using as
well. And as a last thing, I’'m now independent, doing mobile linux consulting to
finance my work into projects like this one on the side —and I’'m available for
contracting, if anybody is interested in what | could do for you w/ cuteboot or other
things in the mobile space.



The philosophical problem

* The "extended mind" is an idea .. which holds
that the reach of the mind need not end at
the boundaries of skin and skull. Tools,
instrument and other environmental props
can under certain conditions also count as
proper parts of our minds.

* What’s running on the mobile devices we so
rarely don’t have on us or by our side?

Given my project history, you may wonder why on earth I'd embark on another semi-
mobile OS like project Iread a particular philosophical paper by David Chalmers&
Andy Clark titled “the extended mind”, which propositions that the reach of the mind
need not end at the boundaries of skin and skull, that tools, instruments and other
props can under certain conditions also count as proper parts of our minds. My
phone, personally, is like a extended memory and a digital augmentation to me. And
these thoughts make me think that I’'m and we’re not in control of our minds —
because we don’t effectively control our devices. And this has haunted me ever since
| read this paper.

While I've worked on solutions that enable us to build and have glibc-based systems
on mobile devices, it’s still way too hard, prone to showstoppers, compared to the
speedy execution, despite the strong usage of ducttape, that essentially closed and
Google-controlled devices are getting put into the market. That battle is uphill and
very expensive, albeit not impossible — and right now, we’re far from winning. We
should instead of thinking about technology choices like glibc/dbus/wayland/etc
versus bionic/binder/surfaceflinger/etc, think about our consumer, or even human
freedom versus our lives and our data being controlled by big companies; where we
can actually make a real impact on a much more equal footing. Is a battle of the
technology of choice more important than that of the battle of freedom of our
minds?



The opportunity

* Thousands of quite nice Android devices (ODM reference
devices or on-market) out there with:

— Open bootloader (so you can flash a boot image of your own
choosing) & boot.img available

— But often without any source codes available

— Maybe sometimes kernel code but almost never full AOSP tree.
* Price rapidily going towards almost-zero. ODMs getting

squeezed on margins. Every Android phone looks the same.
* What if we could leverage the existing Android supply chain

and put our own UX experiences on them; freeing our
minds?

But to get more technical, what exactly is the opportunity? The Android market has
thousands upon thousands devices, on-market or available as reference devices
available from manufacturers that at reasonably low prices can be produced with any
system you’d want to put on it. As long as it derives somewhat from the existing
software for the device and can be applied easily on top of typical AOSP-based source
code tree, the barebones Android w/ hardware adaptation — be too distant and their
manufacturing processes break down and your manufacturing price + time to market
rises. For the whitelabel or aftermarket devices, many of them comes with open
bootloaders and a boot img (kernel and initrd) available, but usually without any
source code available, maybe sometimes a kernel source but almost never a
reasonably full AOSP tree — so being content with having an Android device just
because you could hack the AOSP tree is just not good enough (some exceptions
apply like Nexus devices but even they don’t run always run pure AOSP out of the
box..) In addition to that, it’s possible to work with manufacturers since their margins
are getting hit the same and any kind of real differentation in phone space can matter
-- Since every Android phone looks the same. What If we could leverage all this to put
our own UX experiences on them, making us able to control our interaction and
information flow, effectively freeing our minds? There’s obvious other technical
benefits, too, like untradtional products made from reference designs.



The typical solution — Make a ROM

* Build a Android source tree and patch it to
match with the binary blobs and device
settings

* Often with bad results, broken hardware
support and other quirks and takes too long.

* Why? Because most non-published device
vendor trees are patched right into hell with
strange workarounds. Not to mention not
always delivering right kernel source code.

Now, what is the usual way that people deal with this? They make a Android ROM.
Take AOSP, patch and guesswork enough about the system on the device, add binary
blobs on top until it works. However, It’s often with bad results, broken hardware
support and other quirks + the porting effort takes significant time. Why is this?
Because most non-published device vendor trees are patched right into hell with
strange workarounds. Not to mention not always delivering right kernel source code.



What if we could reuse the existing
system on the device?

* Remove every APK from the installed system
except for the non-visual middleware we want

* Boot up only essential services + handy things like
SurfaceFlinger/RIL/AudioFlinger. Don’t boot up
the Android UX at all

* And instead run our own Qt/QML-based
experience against SurfaceFlinger?

* Without rebuilding the system — the ultimate
ROM?

* Turns out it’s possible.

So what if instead of trying to build a ROM, we reuse the existing system on the
device? Like for example, Removing every APK, booting up only essentially services,
not booting up the Android UX. And instead running our own Qt/QML or otherwise
experience against SurfaceFlinger, the Android compositor? What if we could make it
the ultimate ROM that you could within 10-20 minutes adapt to a new device?



How to strip an Android bare?

* Abit of rm —f, adb logcat’ing and ps aux’ing ©

* An boot.img contains a initrd w/ initialization scripts
(init*rc) that control the startup process
— Where you can disable the boot animation
— And add your own things to start up (like a QML UX)

* And a default.prop in the boot.img where you can add
things like:
— config.disable_noncore=1, ro.secure=0, ro.debuggable=1,

ro.adb.secure=0, persist.sys.usb.config=mtp,adb

* And strip APKs from /system/app and /system/priv-app

until only the services you want start up

* Gives nice 200mb RAM middleware that is fully functional
(can probably be stripped down more RAM/storage wise)

So, how is this done in practice? First thing you’d want to do is to stop Android from
booting up anything but it’s minimal set. But how do you actually strip a Android
system bare? It takes a bit of Jenga-style development, as in: guess a lot and keep
removing things until everything falls apart — which you can witness when that
happens in the logs over ADB and ps aux in adb shell. And some modification and
patching of the boot image to customize the startup process. Android already
provides enough knobs to tune to make this easy. In the end, you end up with a set of
simple instructions to modify the state of an Android device — replace boot.img,
delete a few things in the system directories, change a few setttings. And bam, you
have a nice 200mb RAM middleware that’s fully functional with telephony, wifi, 3g,
bluetooth, nfc, composition, multimedia and camera that you can build on instead of
trying to re-create on your own. 200mb RAM is before tuning the Dalvik/ART memory
usage, which can probably be significantly reduced.



Getting a Qt UX on top

* Most of the support needed is already in Qt
— Plus a few patches to make it more up to date with modern
Android NDK w/o JNI
* A matter of using the right ./configure options and cross-
compilers from AOSP and providing a bit of glue

* SurfaceFlinger plugin was available but didn’t work
properly with modern AOSP. Builds against an AOSP tree,
not a NDK sysroot.

* Binder-accessed services AIDL are full of Parcelables
(custom serialization routines written in Java, not very
friendly for C++/QML)

* Adding a privileged APK (“Java bridge”) requires full re-
signing of framework.jar and other privileged apk’s

We found when we started hacking at this proof of concept, that the most of the
support to run Qt on top of ‘bare’ android was already in Qt, where we only had to
patch it a bit to work with a bit more modern Android NDK. Then it was a matter of
using the right configure options and the right cross compilers from AOSP along with
a bit of Makefile glue, to get it building. Naturally, a bare Qt isn’t terribly interesting,
it’ll work, build, but it can’t show anything on the screen. SurfaceFlinger access, as in,
manually creating windows w/o the involvement of the Dalvik VM is not something
that’s available as headers or even libraries in the Android NDK — so you end up
having to build against a semi-built AOSP source tree which has the right headers.
Because of the Qt QPA system and general pluginability of Qt we can make those
parts hardware adaptation specific. The second problem is however that while that
we have a lot of nice services running in the Android middleware, which theoretically
is described in AIDL interface description files that we could build C++ bindings for...
but in practice most of them have a lot of “Parcelabes” which means “i’ll just write
the serialization code in java manually” which is naturally a pain in the ass if we’d like
to interface with those from C++. So the obvious choice is to make a java bridge that
we communicate with over IPC, but the problem is that adding a privileged APK to an
Android system when you don’t have the platform key, which you usually don’t,
requires a re-cryptographic signing of the system framework jars and other privileged
apks with a new platform key.



AIDL

interface IWifiManager

{ int getSupportedFeatures();
WifiActivityEnergylnfo reportActivitylnfo();
List<WifiConfiguration> getConfiguredNetworks();
List<WifiConfiguration> getPrivilegedConfiguredNetworks();
WifiConfiguration getMatchingWifiConfig(in ScanResult scanResult);

int addOrUpdateNetwork(in WifiConfiguration config);

boolean removeNetwork(int netld);

And just to help understand the power of having this middleware available, this is an
example from the AIDL, interface descriptor for the WiFi Manager.. And you can
imagine that being able to access those functions makes it quite easy to do a quick
QML applications that does the things you want. Similar AIDLs are available for other
very useful services.



To summarize, cuteboot brings

* A set of source code repositories and build
scripts enabling:
— Building Qt + Qt Declarative etc against Android
NDK (device-independent sysroot) w/o JNI

— Building hardware adaptation plugins (Qt
Multimedia, SurfaceFlinger, etc) against specific
(generic) AOSP version

— With a simple ‘build world” approach

Now you’re naturally wondering what cuteboot itself brings to the game — we now
have a middleware, but naturally, the system doesn’t do a lot. So what we essentially
bring with cuteboot is set of source code repositories and build scripts, not currently
very good ones, enabling us to build Building Qt + Qt Declarative etc against a typical
Android NDK sysroot w/o making to use JNI (and hence having to be an Android APK)
and hardware adaptation plugins against the AOSP source code — which can be
generic, and not have to exactly match the system running on the device. This is
because we only use the header files effectively. Doing it in this manner makes us
able to perhaps build a central (and signed) Qt/Qt Declarative build shared across
many devices, and add hardware adaptations bits, so a main Qt-based UX can evolve
independently.

10



Roadmap

* Java bridge w/ gRPC enabling easy access to
Binder-accessed Java services (WiFi, etc)

* Installing into /system instead of ‘cache’
partition
* Installable with .zip file like a ROM

* Two-parts: NDK API level dependent, and
AOSP version dependent

So, naturally, this is currently a proof of concept. But we want to take it further, and
during February we'll start doing these things.. Actually make the Java bridge, make it
work, installing cuteboot into /system instead of our custom cache partition like we
do currently, and make it possible to easily install Cuteboot-based systems to any
device like you’d install any other ROM, through .zip file based recoveries. If we're
lucky, we get into a situation where we can do a central build for a project, and then
a .zip file on top that adds the hardware adaptation. This could prove useful to have
OS releases in two different paces.

11



Intended workflow

* Get a boot.img matching the software running in
your device & patch it

* Build and install Qt & such into /system on device

* Build Java bridge, and access handy middleware
functions over gRPC (Protobuf-based) w/ grpc++
or protobuf-gml

* Re-sign APKs and .jars on device w/ new platform
key

* Build your dream

And the result would be that making the foundation for your device would simply be
to get a boot img, patch it, build qt, build a java bridge, re-sign your APKs on your
device.. And then spend more time building your dream experience. Could this be
easier?



Buying guide for best hackability

* Devices with open bootloaders (and ideally open
flashers)

* With available firmware images for download (so we
get boot.img)

* With Android source tree downloadable for them (that
actually can be built and flashed and is fully functional)
— So you can patch the Android middleware for security, etc.
— Like Fairphone 2.

* Where you can re-lock your bootloader and sign your
boot images with own key (Evil Maid).

And naturally, you will be wondering, OK, so, | now have the ability to control the
user experience of my device; but what about the fact | now have a huge amount of
closed source on my device, that is, the Android system? The answer is to buy
devices and support those companies that give devices with open bootloaders,
flashers, available firmware images, a full Android source tree available for download
+ perhaps a tiny bit of vendor blobs, that can be made into a fully functional OS, so
you can patch the Android middleware for security, etc. One such example that |
know of, is the Fairphone 2. And as last thing, on my own personal wishlist, a device
where you can unlock and re-lock your bootloader, add your own signing keys, to
secure up your device from Evil Maid attacks.

13



One more thing: The Human Web

* The Human Web project seeks to empower everybody with
the ability to:
— Access, protect, control and share their identities and data

— Securely communicate with machine and other human beings
alike

— Trade and participate in smart contracts

— Collaborate and coordinate by themselves or together with
others

— Evolve and share their individual user experiences with others;
like practices and ideas (memes) spread between people

— Do all of the above without having to be tied to any middlemen
* #thehumanweb on irc.freenode.net

Naturally, you might wonder what use | personally would have for cuteboot and this
is a bit of a moonshot project | call the Human Web project, a bit of continuation of
the philosophical thoughts in the start of this talk. We’re a bunch of people who are
unhappy about the direction mobile devices are going and the unacceptable
surveillance and centralization of services. We build on awesome technologies such
as QML, IPFS, Ethereum, Tor, CRDTs, Containers/Sandboxing and so on to do this.
What we seek to do is to empower everybody with the peer-to-peer ability to; ... So if
you’re interested in how a very different take on user experience and
decentralization could be like on our mobile devices and desktop alike, feel free to
join #thehumanweb on irc.freenode.net and join in the discussions and possibly
contribute to the open source project. All kinds of contributions welcome.

14



Thank you

* Any questions?

e Start at #cuteboot on irc.freenode.net for
guidance

* github.com/cuteboot
* Android 4.4 and up preferred.

* @stskeeps on Twitter, Stskeeps on
irc.freenode.net

Thanks for listening. If you’d like to play around with cuteboot, | suggest your first
stop is #cuteboot on IRC, on freenode, to get guidance on how to proceed, and then
go on from there; ideally helping documenting as you go on. Android 4.4 devices and
up are preferred but older versions also possible.

15



