
Config Management and Containers

Charles Butler
Fosdem 2016

@lazypower

charles.butler@ubuntu.com

http://blog.dasroot.net

http://github.com/chuckbutler

mailto:charles.butler@ubuntu.com
mailto:charles.butler@ubuntu.com
http://blog.dasroot.net
http://blog.dasroot.net

We are the company
behind Ubuntu.

Genesis

“Operational pain can
neither be created nor

destroyed - only moved
to someone else”

- Nick Galbreath

Well… You can
create it… :)

- Joshua Corman

Divergence

Convergence

Congruence

cited: http://usenix.org/legacy/publications/library/proceedings/lisa02/tech/full_papers/traugott/traugott_html/index.html

System Management Patterns

http://usenix.org/legacy/publications/library/proceedings/lisa02/tech/full_papers/traugott/traugott_html/index.html

1

2

3

4

5

Config Management Solved Problems

Stopped divergent delivery patterns from a pre-virtualized world

Best Attempt to eliminate snowflakes

Frameworks to describe machine state

Support upstream packaging (or from source deployments)

resource abstraction

1 2 3

Emergent issues w/ Config Management

Domain specific
configuration
managers

Context Sensitive
Knowledge barriers.

10% technological—
the rest is improved
management,
process, and user
training. [1]

[1] cited: ftp://ftp.sei.cmu.edu/pub/case-env/config_mgt/papers/PastPresentFuture.pdf

ftp://ftp.sei.cmu.edu/pub/case-env/config_mgt/papers/PastPresentFuture.pdf

Enter Containers

The New Stack

Containers offer a way to virtualize an
operating system.

This virtualization isolates processes, providing limited visibility and resource
utilization to each, such that the processes appear to be running on separate

machines.

Confidential Canonical™

Flavors

- Many processes
- runs /sbin/init
- Has amenities like cron
- SSH’able
- Can be treated as immutable

or mutable. But designed to be
mutable

- Single Process
- No init
- No amenities like cron
- No SSH
- typically run/handled as

immutable objects

Application Containers System Containers

image credit: https://www.howtoforge.com/tutorial/how-to-use-docker-introduction/

1

2

3

4

Benefits of “the new stack”

Resource Constraints

Density

Super Fast (often sub second)

No VM Overhead

Why Config Management & Containers
A critical look

Model Everything

Model containers and non-containers

manage not only the containers, but the environments around the
containers

 This is especially important, as containerized applications are nearly
always talking to components

- storage
- database
- networking

that are not in containers, and in some (rare) cases: unable to be placed in a
container.

Chuck’s Adventure

Chuck’s Adventure

Delivery Patterns
Application containers vs uncontained delivery

Before

Confidential Canonical™

Kubernetes Charm as a Case Study

 2283 total LOC

- No Build Env
- 8 Min Delivery
- ~ 1 min upgrade cycle
- Same model suggested by

google

 5317 total LOC

- Required a Build Env
- 15 Min Delivery
- 8 min upgrade cycle
- Different model than

suggested by google

3,034 LOC reduction in cost of ownership

uncontained Delivery containerized Delivery

After (mid flight)

Take a closer look @ the
Kubernetes Example

layer-docker

● Delivers the latest -Stable engine from Docker’s PPA

● Provides a consistent interface to work with charming application
containers.

● meaningful synthetic states - @when(‘docker.ready’)

● Includes charms.docker

http://github.com/juju-solutions/layer-docker

http://github.com/juju-solutions/layer-docker
http://github.com/juju-solutions/layer-docker

charms.docker

- Configure and interact with a Docker Daemon
- Manage DOCKEROPTS

opts = DockerOpts()

opts.add(‘allow-insecure-registry’, True)

opts.to_string()

http://github.com/juju-solutions/charms.docker

http://github.com/juju-solutions/charms.docker
http://github.com/juju-solutions/charms.docker

charms.docker

- Interact with a docker-engine

from charms.docker import Docker

d = Docker()

pid = d.up('lazypower/idlerpg:latest',

 dirs={"files/idlerpg":"/files/idlerpg"},

 ports=["8000:8000"])

http://github.com/juju-solutions/charms.docker

http://github.com/juju-solutions/charms.docker
http://github.com/juju-solutions/charms.docker

charms.docker

- Manage docker-compose templates

from charms.docker.compose import Compose

compose = Compose(‘files/tikiwiki’)

compose.up(‘mysql’)

compose.kill()

compose.rm()

http://github.com/juju-solutions/charms.docker

http://github.com/juju-solutions/charms.docker
http://github.com/juju-solutions/charms.docker

Containers as Payloads

Containers as Payloads

- System Containers can be delivered in a similar fashion
- Pack in a quick-configuration script to carry your CM configuration values

into the environment
- lxd run /opt/configure_my_service foo=bar baz=bam

- Generate the pre-configured containers with CM tooling

- Juju, Chef, Puppet, Ansible, Saltstack, Foreman, CFEngine, or

whatever strikes your fancy

LXD ships with everything you need

LXD can act as a hosting image server

- Warehouse base images
- Push container snapshots for migration / distribution
- Trusted Registry by default, they’re all your containers

Where is charms.lxd then?

Simply stated:

LXC/LXD is natively supported in Juju. These “primitives”
are exposed as a native “machine” to create units for an
Application.

These principles work in every CM toolkit

Ansible Modules

https://github.com/kbrebanov/ansible-lxd

http://docs.ansible.com/ansible/lxc_container_module.html

Deliver and manage System Containers

http://docs.ansible.com/ansible/docker_module.html

Deliver and manage Application Containers

https://github.com/kbrebanov/ansible-lxd
https://github.com/kbrebanov/ansible-lxd
http://docs.ansible.com/ansible/lxc_container_module.html
http://docs.ansible.com/ansible/lxc_container_module.html
http://docs.ansible.com/ansible/docker_module.html
http://docs.ansible.com/ansible/docker_module.html

Chef Cookbooks

https://supermarket.chef.io/cookbooks/container

Deliver and manage System Containers

https://supermarket.chef.io/cookbooks/docker

Deliver and manage Application Containers

https://supermarket.chef.io/cookbooks/container
https://supermarket.chef.io/cookbooks/container
https://supermarket.chef.io/cookbooks/docker
https://supermarket.chef.io/cookbooks/docker

Puppet Modules

https://github.com/tripledes/sjimenez-lxc

Deliver and manage System Containers

https://forge.puppetlabs.com/garethr/docker

Deliver and manage Application Containers

https://github.com/tripledes/sjimenez-lxc
https://github.com/tripledes/sjimenez-lxc
https://forge.puppetlabs.com/garethr/docker
https://forge.puppetlabs.com/garethr/docker

Salt Stack

https://docs.saltstack.com/en/latest/topics/cloud/lxc.html

Create / Manage System Containers

https://docs.saltstack.com/en/latest/ref/states/all/salt.states.dockerng.
html

Create / Manage Application Containers

https://docs.saltstack.com/en/latest/topics/cloud/lxc.html
https://docs.saltstack.com/en/latest/topics/cloud/lxc.html
https://docs.saltstack.com/en/latest/ref/states/all/salt.states.dockerng.html
https://docs.saltstack.com/en/latest/ref/states/all/salt.states.dockerng.html
https://docs.saltstack.com/en/latest/ref/states/all/salt.states.dockerng.html

Thanks for your time
Come see us @ CFGMGMTCAMP 2016 in Gent

http://summit.juju.solutions

