
API-Powered Dictionary Websites

Sandro Cirulli

Oxford University Press

sandro.cirulli@oup.com

Abstract

Oxford University Press (OUP) recently started the Oxford Global Lan-

guages (OGL) initiative whose focus is to provide language resources for

digitally under-represented languages. In August 2015 OUP launched two

African languages websites for isiZulu and Northern Sotho. The backend of

these websites is based on an API retrieving data in RDF from a triple store

and delivering data to the frontend in JSON-LD.

The software presentation focuses on the API (Application Program-

ming Interface) developed to power these websites. We show API calls

to search dictionary entries, add new content on the website in real-time

and delete it if need be. We discuss the advantages of API-powered web-

sites, how the API allowed OUP to crowdsource linguistic data from online

communities, and how APIs facilitate the integration of data with external

systems and developers. Finally, we outline future work for the next phase

of development of the API and OGL websites.

mailto:sandro.cirulli@oup.com
http://www.oxforddictionaries.com/words/oxfordlanguages
http://www.oxforddictionaries.com/words/oxfordlanguages
http://zu.oxforddictionaries.com/
http://nso.oxforddictionaries.com/


1 Introduction

At the end of 2014 Oxford University Press (OUP) launched the Oxford Global

Language (OGL) initiative [5] whose focus is to create linguistic resources par-

ticularly for digitally under-represented languages. The aim of the programme is

to help language communities over the world to create, maintain, and use digi-

tal language resources while developing digital-ready content formats to support

the growing language needs of technology companies worldwide. The model

attempts to create a win-win situation where communities of digitally under-

represented languages contribute content, licensees consume data in the digital

format they need, and Oxford University Press generates revenue in order to pub-

lish language resources online and keep the services free for online communities.

In August 2015 OUP launched its first two language websites for isiZulu [3]

and Northern Sotho [4]. The backend of these websites is based on an API (Ap-

plication Programming Interface) retrieving data in RDF [7] from a triple store

and delivering data to the frontend in JSON-LD [6].

In the next sections we describe the technical implementation of the backend,

discuss the advantages of API-powered websites, and sketch future work for the

next development phase of the API and OGL websites.

1



2 Technical Implementation

2.1 System Architecture

Figure 1 shows the production system architecture for the isiZulu and Northern

Sotho websites. The diagram highlights the following layers:

• Frontend Layer which relates to the websites frontend (HTML, CSS, JavaScript)

• Security Layer which includes authentication and authorization layers han-

dling access and permissions to the API

• Backend Layer which relates to the websites backend, including the API,

the application server, and the data store

For the frontend and the security layers OUP relies on third-party services

whereas the backend is fully developed and maintained by OUP and is the focus

of the software presentation. In particular, we deployed an nginx web server for

connecting with the API, a RESTful API using Python for interacting with the

data, and a GraphDB triple store for storing both OUP language data and user

contributed data in RDF; the whole backend infrastructure runs on Amazon EC2

instances [1] using a microservices architecture based on Docker [2].

2



Figure 1: Production Architecture

3



2.2 User Interactions via API

A Web Application Programming Interface (API) is a set of functions, objects,

and protocols for exchanging information with a website [8] [9]. An API is es-

sentially a machine-to-machine interface and its typical use is to receive and send

data via HTTP requests. For example, a Web API can retrieve data using a HTTP

GET request and submit new data via a HTTP POST request.

Figure 2 shows user interactions with the website to add new content (1) and

retrieve existing and newly created content (2). In 1.1 the user fills a web form on

the frontend and provides information related to an entry (e. g. headword, part of

speech, translation, example, etc.). The content of the web form is sent to the API

via a POST request (1.2). The API validates the content of the request and gen-

erates a SPARQL Update query for the triple store (1.3). The triple store runs the

SPARQL Update query (1.4) and returns the HTTP status code of the SPARQL

query to the API (1.5). The HTTP status code is mapped and transmitted back to

the frontend (1.6) which displays a confirmation message to the user (1.7). The

new entry created by the user is stored on the triple store and is immediately avail-

able on the website.

In 2.1 the user requests an entry via the website search interface. The fron-

tend sends a GET request to the API (2.2). The API translates the request into

a SPARQL query and send it to the triple store (2.3). The triple store runs the

SPARQL query (2.4) and returns the results in RDF to the API (2.5). The API

serializes the RDF into JSON-LD and returns it to the frontend (2.6). Finally, the

4



website displays the entry to the user in an HTML page (2.7).

Figure 2: API GET and POST requests

In addition to the GET and POST APIs, we developed a DELETE API al-

lowing to remove content via the website’s Content Management System (CMS)

and a GET API performing a fuzzy match on headwords and inflected forms for

auto-completion purposes. The sequence diagram for these API calls are similar

to those illustrated in Figure 2.

During the software demonstration we plan to show these user interactions

via our staging website and the API Swagger interface on our developer portal

(Figure 3).

5



Figure 3: API Swagger Interface

3 Benefits of APIs

The development of an API to power dictionary websites offers the following

benefits:

• Reusability: data is accessed via a programmatic method. As a result, ad-

ditional data for other languages can reuse the same API calls thus reducing

development costs in the long term.

• Flexibility: data is delivered in a flexible, modular way and can be shipped

6



in a variety of data formats (XML, JSON, RDF, JSON-LD) through web-

sites, data dumps, web services, etc.

• Crowdsourcing: content contributed by online communities can be easily

gathered and showed in real-time on a website. Although this advantage is

not unique to APIs, the use of an API facilitates the automation, integration,

and reusability of crowdsourced data.

• Integration: External systems, applications, and developers can easily in-

tegrate and consume data via APIs.

4 Future Work

The OGL initiative aims to develop several dictionaries and languages resources

especially for digitally under-represented languages in the next years. OUP is cur-

rently developing the second phase of its programme and plans to launch in 2016

other dictionary websites built around online communities.

The development of APIs is also a key investment for OUP as it allows to

automate processes, clean up data, and speed up content delivery for both web

services and licensees. We are also working with commercial and non-commercial

partners to open up some datasets via APIs and Semantic Web technologies and

would be interested in specific use cases from other potential partners.

7



5 Hardware/Software Requirements

Apart from a projector and Internet access at a decent speed, no specific hardware

or software requirements is needed to carry out the software presentation.

8



References

[1] Amazon Web Services, Inc. Amazon EC2. https://aws.amazon.com/ec2.

Accessed: November 5, 2015.

[2] Docker. Docker - Build, Ship, Run Any App, Anywhere. https://www.

docker.com. Accessed: November 5, 2015.

[3] Oxford University Press. Explore & Translate isiZulu - Oxford Dictionaries.

https://zu.oxforddictionaries.com. Accessed: November 5, 2015.

[4] Oxford University Press. Explore & Translate Northern Sotho - Oxford Dic-

tionaries. https://nso.oxforddictionaries.com. Accessed: November

5, 2015.

[5] Oxford University Press. Oxford’s Global Language Initiative. http:

//www.oxforddictionaries.com/words/oxfordlanguages. Accessed:

November 5, 2015.

[6] W3C. JSON-LD 1.0. http://w3.org/TR/json-ld. Accessed: November

5, 2015.

[7] W3C. Resource Description Framework (RDF). http://www.w3.org/RDF.

Accessed: November 5, 2015.

[8] Wikipedia. Application Programming Interface. https://en.wikipedia.

org/wiki/Application_programming_interface. Accessed: November

5, 2015.

9

https://aws.amazon.com/ec2
https://www.docker.com
https://www.docker.com
https://zu.oxforddictionaries.com
https://nso.oxforddictionaries.com
http://www.oxforddictionaries.com/words/oxfordlanguages
http://www.oxforddictionaries.com/words/oxfordlanguages
http://w3.org/TR/json-ld
http://www.w3.org/RDF
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface


[9] Wikipedia. Web API. https://en.wikipedia.org/wiki/Web_API. Ac-

cessed: November 5, 2015.

10

https://en.wikipedia.org/wiki/Web_API

	Introduction
	Technical Implementation
	System Architecture
	User Interactions via API

	Benefits of APIs
	Future Work
	Hardware/Software Requirements

