
1

Tuning Valgrind
for your Workload

Hints, tricks and tips to effectively
 use Valgrind on small or big applications

Philippe Waroquiers
FOSDEM 2015 valgrind devroom

2

Some rumours about Valgrind ...

● Valgrind burns all the CPU it can
● … and it burns it on a single CORE
● Valgrind eats memory as much as it can
● Valgrind is powerful and sophisticated,

it finds nasty bugs
and gives you a lot of information
about your bugs and your program.

● Last rumour is true
● First 3 rumours are also (somewhat) true

3

Valgrind resource consumption

● To give sophisticated functionalities,
Valgrind is effectively a big resource consumer

● Can we do something about that ?
● Yes we can !

● Simple use: default tool and default options:
valgrind your_program

● Otherwise valgrind and all its tools have more than
150 user command line options to e.g. control
– what kind of bugs to detect
– which information to capture
– ...

Valgrind resource consumption
what can we do ?

● Use command line options to
● consume even more CPU/memory

and have more information/features
● decrease (somewhat) CPU/memory consumption

by reducing captured information

● What can be controlled can be
● Tool independent, e.g. stacktrace size, use of

debug information, …
● Tool dependent e.g. uninitialised memory origin

tracking for memcheck, detailed race condition
history for helgrind, ...

5

Demo

Tuning Valgrind malloc replacement

● Red zones useful to detect over/under-run
● Configurable via --redzone-size=xxxx

● But are costly if many small blocks
● => Reduce redzone size if short on memory

– In particular for helgrind
● => Increase redzone size

if suspecting (big) over/under-run

● Use --stats=yes -v -v to have some useful
info about the valgrind malloc arenas

7

Tuning Valgrind stacktrace capture

● Configure the nr of recorded program counters
--num-callers=xx

● To merge recursive calls
--merge-recursive-frames=x

● valgrind >= 3.10 shows inlined calls
unless you give --read-inline-info=no

● To have stats about recorded stack traces:
 valgrind --stats=yes …. 2>&1 | grep exectx:
For full list, use gdb+vgdb monitor command:

(gdb) monitor v.info exectxt

Tuning Valgrind stacktrace capture
memcheck specific

● By default, one stack trace is referenced:
● memcheck records both malloc and free stack trace
● A block references the last recorded stack trace :

the malloc stack trace, and when freed, the free
stacktrace

● Use --keep-stacktraces=....
to control what to record and reference

--keep-stacktraces=alloc-and-free
only one word overhead per block, compared to
--keep-stacktraces=alloc-then-free

Tuning Valgrind stacktrace capture
helgrind specific

● By default, helgrind keeps a stacktrace (max 8
frames) for past memory accesses

● Use --history-level=none|approx|full
to control what history stacktraces to record

● Use --conflict-cache-size=N
to configure the size of the full history cache

Obtaining more info about your bugs

● Default values for Valgrind options
are chosen to provide
a good balance
between cost (CPU and memory)
and provided functionality

● Examples: --read-inline-info=yes
--read-var-info=no
--track-origins=no (memcheck)
--history-level=full (helgrind)

Tuning Valgrind JIT

● You might (unlikely) gain a few % by using the
VEX command line options
● Use valgrind --help-debug for details

● If your application code is big
● You might avoid re-translating code by increasing

valgrind JIT code cache:
--num-transtab-sectors=NN (impacts memory!)

● Use --stats=yes to see when a transtab
sector is recycled

Getting Valgrind info/stats

● Use valgrind --stats=yes (-v -v)
for general stats

● Use valgrind --profile-heap=yes
for detailed internal valgrind memory use

● During run, you can use (from shell)
● vgdb v.info stats
● vgdb v.info memory aspacemgr

Optimising Valgrind for speed/CPU

● Set your CPU frequency to fixed high speed
● e.g. using cpufreq-selector -g performance

● Tune stack recording (e.g. if heavy malloc use)
● If huge code, increase --num-transtab-sectors
● Disable some tool specific features

e.g. --undef-value-errors=no (memcheck)
 --track-lockorders=no (helgrind)

● Unlikely/limited gain using vex options
● … (study valgrind --help and

valgrind user manual)

Optimising Valgrind for memory

● Disable some tool specific features
e.g. --undef-value-errors=no (memcheck)

 --track-lockorders=no (helgrind)
● Tune stack recording
● Decrease redzone size --redzone-size=N
● Decrease --num-transtab-sectors
● … (study valgrind --help and

valgrind user manual)

Optimising Valgrind for functionality

● Enable optional tool functionalities e.g.
--track-origin=yes (memcheck)
--leak-check-heuristics=all (memcheck)

● Record more/all what you can, e.g. memcheck
--freelist-vol=NNNNN
--keep-stacktraces=alloc-and-free
...

● … (study valgrind --help and
valgrind user manual)

Conclusions/guidelines

● Default options are ok for an average user
● => automate your regression tests
● => run them under Valgrind

– and be patient

● Read Valgrind manual
● You have nice optional features to activate
● You can (somewhat) tune valgrind for your workload

17

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

