Running Valgrind
on multiple processors:
a prototype

Philippe Waroquiers
FOSDEM 2015 valgrind devroom

Valgrind and threads

» Valgrind runs properly multi-threaded
applications

« But (mostly) runs them using a single CORE

» Valgrind needs a lot of CPU

* Depending on the tool,
single-threaded applications
are slowed down
by a factor 4x to 100x or more

Valgrind and CPU consumption

» Significant development effort was and Is spent
to make Valgrind faster e.g.

* Improvement of the JIT generated code
« Self-modifying code detection

* Translation chaining
* Tool specific performance improvement

Improving Valgrind speed

* Improving 'sequential’ speed is good for all
applications

 However, often, the last years, the gains are small
typically around 5 .. 10%

 Multi-threaded CPU bounded applications
would benefit a lot from parallelising Valgrind

e But how hard is that ?

Valgrind layers

TOOL

Generated/instrumented code

GUEST (from program to run)

Valgrind CORE
layer

Valgrind layers typical control flow

1. CORE decodes guest code : instructions to IR

2. CORE calls TOOL instrument : IR to IR.
Instrumented code typically contains many calls
to TOOL runtime code or CORE code.

3. CORE translates instrumented code to
executable code : IR to Instructions

4. Instructions stored In the translation table
5. Valgrind scheduler calls the translation

(Most of) Valgrind code is
non-reentrant/non thread-safe

 Translation is non thread-safe: VEX lib, tool
Instrument function, CORE translation
framework, ...

 “Run time” Is non thread-safe:

e CORE scheduler, CORE malloc/free, CORE
aspacemgr, CORE statistics, ...

« TOOL runtime code, e.g. memcheck malloc/free,
memcheck VA bits data structures, ...

* S0, why Is Valgrind able to run properly multi-
threaded applications ?

Valgrind “big lock” model

» Valgrind has a big lock

* The big lock protects all Valgrind data structures/all
Valgrind global variables/all tool data structures/...

* Big lock implemented via a 'pipe based lock’
(default) or via futex (‘ticket lock’), cfr --fair-sched

* To execute JIT-ted guest or tool or core code,
a thread first must acquire the big lock

» Athread releases the lock
» After it has executed 100K basic blocks
or
« Before entering in a blocking syscall

To parallelise Valgrind

 We must
 Remove the big lock
or
» At least decrease the use of the big lock

Parallelising Valgrind
possible techniques

 Read/write locks

* (fine grained) mutex locks

« Atomic Instructions

 Thread local storage instead of global variables
* Lock-less algorithms/data structures

» A prototype has used some of the above to
parallelise some (small) parts of Valgrind

What to parallelise (first) ?

« Atypical tool/application spends most of CPU in
the generated JIT code, in the TOOL and
CORE “runtime” code

* The time spent in TOOL instrument function is
normally not a major part

 => First idea: ensure that the threads are
running guest JIT-ted code Iin parallel

Running JIT-ted code In parallel
Basic idea

* Replace 'mutex Big lock' by 'read/write Big lock’

» Athread acquires the RW Big lock
* |In read mode to run guest JIT-ted code
 |n write mode to do anything else

* First implementation of basic idea:

* Objective: ensure 'none' tool runs in parallel

 How : RW lock implemented on top of 'pipe based
locks'

Running JIT-ted code in parallel
First implementation expected results

* Of course, first implementation will be efficient

* As the pipe based lock is efficient enough for
current Valgrind, the rw lock will be efficient enough
for parallel use

* Of course, first implementation will be correct

* As “none” tool means no Valgrind data structure are
accessed when running JIT-ted guest code

« Of course, all above
 was shown WRONG !l

Running JIT-ted code In parallel
First implementation problems

» Lack of efficiency when translating new code:

 When new code to be translated, sequential
valgrind just keeps the lock

» Parallel Valgrind needs to (re-)acquire the lock in
Write mode => a lot more (expensive) 'lock/unlock’

* Lack of correctness
 What looks like a 'read-only' action (execute already

translated code) is in fact doing many updates e.g.

- statistical counters
- fast cache associating guest code with JIT code
- Translation chaining

Running JIT-ted code In parallel
Fixing first implementation

e Better way to find non thread safe code

« Valgrind and helgrind were improved to allow to run
an 'inner parallel valgrind' under an outer helgrind

e Improvements are now Iin Valgrind release :
It IS now easy/ier to run Valgrind under Valgrind

 Helgrind was used to find race conditions in
prototype parallel Valgrind

» Efficiency :

« RW lock based on (slow) pipe based mutexes
replaced by RW lock code copied/modified from
glibc

Read the patch...

Prototype code accessible in SVN MTV branch
see also doc/internals/mtV.txt

16

Multi-threaded Valgrind : challenges
Valgrind core
 Make (more of) core parallel/thread-safe
* Prototype is far to be complete/correct

* Probably/maybe we need an option
to have sequential run of parallel tools
(e.g. to avoid memcheck false + or -)
or avoid running non parallel tools in parallel

* Implement atomic ops for other arch
 What about Darwin and fast mutex ?

Multi-threaded Valgrind : challenges
Making Valgrind tools parallel

» At least memcheck (the most used tool)

« Keep cpu and/or memory efficiency is difficult
(apart of trivial tools such as --tool=none)

* No tool was made parallel (except none)

 Parallel memcheck somewhat discussed/tried

* Draft proposal of new VA-bits approach made by
Julian Seward

Multi-threaded Valgrind : challenges

Memcheck VA-bits data structure
* |s currently highly optimised, CPU and memory

 No solution found that at the same time

* |s efficient in CPU and memory
 and has no false + and/or false -

 Maybe make 'VA-bits read' inline fast, "VA-bits
write' use mutex ? (or an option to activate write
mutex)

 Maybe we need tuning options such as
--va-bits=sequential | parallel-cpu
| parallel-memory | ...

Multi-threaded Valgrind : challenges

* Probably many challenges not known yet ...

 Because not exercised by the prototype 'testing'

 Many core modules not looked at
e.g. Valgrind malloc, error mgr, stack unwind, ...

* Do all the above without slowing down the
seguential case

 Many optimisations to be redone/reworked !

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

