
CTSRDCTSRDCRASH-worthy
Trustworthy

Systems
Research and
Development

The CHERI CPU
RISC in the age of risk

David Chisnall

University of Cambridge

Approved for public release; distribution is unlimited. This research is sponsored by the
Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contracts FA8750-10-C-0237 and FA8750-11-C-0249. The views,
opinions, and/or findings contained in this article/presentation are those of the author(s)/
presenter(s) and should not be interpreted as representing the official views or policies of
the Department of Defense or the U.S. Government.

Memory: You’re doing it
wrong!

2

~82% of exploited vulnerabilities in 2012
— Software Vulnerability Exploitation Trends, Microsoft

Low-level languages rule

3 Source: openhub.net

C: 8,323,328,367 lines of code
C++: 2,966,693,989 lines of code
Java: 2,861,498,030 lines of code

Scala:13,780,744 lines of code

N
ew

 c
od

e
co

m
m

itt
ed

Security is important again

4

Multi-user systems

Disconnected single-
user systems

Single-user, multi-attacker
systems

RISC is for compilers

• Nothing that can be done fast in software should
be done in hardware.

• Everything that can only be done well in hardware
should be in hardware.

5

The CHERI model

• Memory protection as a first-class part of the ISA

• A single abstraction for bounds checking and
sandboxing

• Mechanism in the hardware, policy in software

6

Pointers should be
capabilities

• Smalltalk (Java, etc) pointers confer the rights to
access an object.

• C pointers can (in practice) be constructed from
arbitrary integers.

• Capabilities are unforgeable tokens of authority.

7

CHERI capabilities

32 capability registers

8

base	
 [64]

length	
 [64]

Permissions	
 [32] Type	
 [24] Reserved	
 [8]

virtual	
 address	
 [64]	
 (exposed	
 as	
 offset)

Field Operation

Permissions Bitwise and

Base Increment (and
decrease length)

Length Decrease

Offset Arbitrary
manipulation

ISA Operations

Tags to Protect
Capabilities in Memory

Capabilities on the stack and in data structures

DATA

256 bits1 bit

TAGS

9

Address Calculation

10

Instruction
Fetch

Legacy
Data Access

Capability
Data Access

$PC $Rn $Cn

Physical Memory

TLB

Physical Address

Virtual Address

Offset
$PCC $C0

Tag Table in Commodity DRAM

DATADRAM

Tag Lookup
(with cache)

L2 Cache

TAGS
<0.5%

Tags on
physical
memory Cache line is

tag(s) + data

11

128 tag bits per
4KB page

• OS managed

• Enables swapping

• Centralised

• Allows revocation

Paged Memory

Address validation

12

Capabilities

• Compiler managed

• Precise

• Can be delegated

• Many domains

Pointer safety

13

CHERI
Capabilities

• OS managed

• Enables swapping

• Centralised

• Allows revocation

• Compiler managed

• Precise

• Can be delegated

• Many domains

Paged Memory+

Address validation Pointer safety

14

Memory safety in hardware

• All memory accesses must be via a valid capability

• Instructions only allow restricting range /
permissions of capabilities

• Now all we need is software…

15

Building on open source

• A full open source stack:

• LLVM/Clang-based compiler.

• Modified FreeBSD.

• Extended BERI processor.

• Real software from the FreeBSD ports collection.

16

Process start
• $c0 and $pcc cover the entire address space.

• Unmodified code is completely oblivious.

• CHERI-aware code can derive restricted
capabilities from either.

• Compartments can be created by discarding/
subsetting $c0 in some threads.

17

Don’t break the world!

• Code that doesn’t contain memory safety errors
should work!

• Even if it does slightly (or very) evil things with
pointers!

• Ideally only code with memory safety errors should
break.

18

C is weird
• Long standard describes allowed behaviour.

• Lots of things are implementation defined or undefined.

• All nontrivial programs depend on implementation-
defined behaviour.

• Breaking this makes programmers cranky!

• We discovered most of these things when we broke
them and tried to compile real programs (e.g.
tcpdump)

19

Pointers and Integers

20

N1570 Committee Draft — April 12, 2011 ISO/IEC 9899:201x

3 The following types are required:

int_fast8_t
int_fast16_t
int_fast32_t
int_fast64_t

uint_fast8_t
uint_fast16_t
uint_fast32_t
uint_fast64_t

All other types of this form are optional.

7.20.1.4 Integer types capable of holding object pointers
1 The following type designates a signed integer type with the property that any valid

pointer to void can be converted to this type, then converted back to pointer to void,
and the result will compare equal to the original pointer:

intptr_t

The following type designates an unsigned integer type with the property that any valid
pointer to void can be converted to this type, then converted back to pointer to void,
and the result will compare equal to the original pointer:

uintptr_t

These types are optional.

7.20.1.5 Greatest-width integer types
1 The following type designates a signed integer type capable of representing any value of

any signed integer type:

intmax_t

The following type designates an unsigned integer type capable of representing any value
of any unsigned integer type:

uintmax_t

These types are required.

7.20.2 Limits of specified-width integer types
1 The following object-like macros specify the minimum and maximum limits of the types

declared in <stdint.h>. Each macro name corresponds to a similar type name in
7.20.1.

2 Each instance of any defined macro shall be replaced by a constant expression suitable
for use in #if preprocessing directives, and this expression shall have the same type as
would an expression that is an object of the corresponding type converted according to
the integer promotions. Its implementation-defined value shall be equal to or greater in
magnitude (absolute value) than the corresponding value given below, with the same sign,
except where stated to be exactly the given value.

§7.20.2 Library 291

void *a = something();
intptr_t b = (intptr_t)a;
a = (void*)b;

void *a = something();
long long b = (long long)a;
a = (void*)b;

Implementation defined!

Simple Problem: memcpy()

21

struct foo {
 void *a;
 int b;
};
struct foo new = old;

memcpy(&new, &old, sizeof(struct foo);

The memcpy() function doesn’t know if it’s copying
pointers or data!

Pointers as capabilities

22

C code used __capability qualifier to tag pointers to
be represented as capabilities

// 64-bit integer (address)
void *foo;
// 256-bit capability
__capability int *bar;
// Increment offset by sizeof(int)
bar++;
// Load 4 bytes at offset+sizeof(int)
bar[1];

Enabling pointer abuse

23

// The low bit of a sensibly aligned pointer is
// always 0, so we can hide a flag in it
__capability int *set_flag(__capability int *b)
{
 return (__capability int*)((__intcap_t)b | 1);
}

Enabling pointer abuse

24

 # Integer constant 1
 daddiu $1, $zero, 1
 # Derive a canonical null capability
 cfromptr $c1, $c0, $zero
 # Set intcap_t (tag not valid) to 1
 csetoffset $c1, $c1, $1
 # Get the integer values of both operands
 cgetoffset $1, $c1
 cgetoffset $2, $c3
 # Perform the arithmetic
 or $1, $1, $2
 # Set the offset in the original capability
 csetoffset $c3, $c3, $1

Legacy interoperability
(is hard)

25

void *foo;
__capability char *bar;
// What does this do?
bar = (__capability char *)foo;
// Or this?
foo = (void *)bar;

First cut at Casts

26

 # Cast from pointer ($1) to capability ($c1)
 CIncBase $c1, $c0, $1
 # Cast from capability ($c1) to pointer ($1)
 CGetBase $c1, $1

• What happens if the pointer is null?

• What happens if the capability is outside the $c0
range or $c0 has a non-zero offset?

NULL in C

27

§6.3.2.3.3:

An integer constant expression with the value 0, or such an
expression cast to type void *, is called a null pointer
constant.66) If a null pointer constant is converted to a pointer
type, the resulting pointer, called a null pointer, is guaranteed
to compare unequal to a pointer to any object or function.

void *null = (void*)0;
int a = 0;
void *might_be_null = (void*)a;

No C programmer has ever paid attention to this!

Casts in CHERI

• CFromPtr gives a null capability if the integer is 0

• CToPtr gives a 0 integer if the capability is null or
outside of $c0

28

 # Cast from pointer ($1) to capability ($c1)
 CFromPtr $c1, $c0, $1
 # Cast from capability ($c1) to pointer ($1)
 CToPtr $1, $c0, $c1

Where do bounds come
from?

• An object in C is a single allocation.

• OpenSSL’s Heartbleed vulnerability was caused
(partly) by splitting allocations.

• Some programmer policy is essential!

• Sizes of globals, stack allocations, malloc() calls
are not enough (but they’re a good start!)

29

Safer returning

30

MIPS CHERI

Call jalr $t9, $ra cjalr $c12, $c17

Return jr $ra cjr $c17

Spill return address
to stack sd $ra, 32($sp) csc $c17, $sp, 32($c11)

Behaviour if spilled
value is corrupted

Jump somewhere
(attacker’s choice) Trap

Capabilities are for code, not just for christmas data

Comparing pointers

• C says it’s undefined behaviour to compare
pointers to different objects

• C programmers do it all the time

• CHERI adds pointer compare instructions

31

Some evil things people do
to pointers

• Store them in integer variables (works if they’re
[u]intcap_t)

• Do arbitrary arithmetic on them

• Let them go out of range in the middle of a
calculation

• Compare pointers to different objects

32

All of these need to work!

A tale of 2 3 ABIs
• Incremental deployment is vital for testing

• Rewriting (or even recompiling) all code at once
isn’t feasible

33

More compatible More safe

n64
Pure MIPS

Pure-capability
All pointers are

capabilities

n64 + CHERI
Some pointers
are capabilities

The pure-capability ABI

• Code where all pointers are capabilities.

• May have a null $c0.

• Can only see a subset of all memory.

• Incompatible with syscall ABI.

34

CHERI-friendly libraries
• Always use typedefs for pointer types.

• Don’t put struct definitions for opaque types in
headers.

• Separate file-handling layers (that make syscalls)
from buffer-handling layers.

• Write good code!

35

Memory Safety Overhead

36

Smaller is better

Bisort MST
Treeadd

Perimeter
0

50

100

0

Ti
m

e
(s

ec
on

ds
)

MIPS
CHERI

Figure 1. Olden results

Bigger is better

MIPS
CHERI

0

10,000

20,000

30,000

0

D
hr

ys
to

ne
s

(p
er

-s
ec

on
d)

Figure 2. Dhrystone results

Smaller is better

MIPS
CHERI

0

50

100

0

Ti
m

e
(s

ec
on

ds
)

Figure 3. Tcpdump results

2

Smaller is better

Bisort MST
Treeadd

Perimeter
0

50

100

0

Ti
m

e
(s

ec
on

ds
)

MIPS
CHERI

Figure 1. Olden results

Bigger is better

MIPS
CHERI

0

10,000

20,000

30,000

0

D
hr

ys
to

ne
s

(p
er

-s
ec

on
d)

Figure 2. Dhrystone results

Smaller is better

MIPS
CHERI

0

50

100

0

Ti
m

e
(s

ec
on

ds
)

Figure 3. Tcpdump results

2

Smaller is better

Bisort MST
Treeadd

Perimeter
0

50

100

0

Ti
m

e
(s

ec
on

ds
)

MIPS
CHERI

Figure 1. Olden results

Bigger is better

MIPS
CHERI

0

10,000

20,000

30,000

0

D
hr

ys
to

ne
s

(p
er

-s
ec

on
d)

Figure 2. Dhrystone results

Smaller is better

MIPS
CHERI

0

50

100

0

Ti
m

e
(s

ec
on

ds
)

Figure 3. Tcpdump results

2

Olden (pointer-chasing) benchmarks

Dhrystone (CPU-
intensive) benchmark

tcpdump (real code!)

Building sandboxes

37

Shared
Code Local Heap Shared

Data
Shared

Data

$pcc $c0 $c1 $c2 ...

No access to any memory without valid capabilities

Process-based sandboxes?

• More expensive to create (new kernel process,
virtual memory map)

• More expensive to share (one TLB entry per page)

• No fine-grained sharing (page granularity)

• Better separation of kernel rights (so far!)

38

Library Sandboxing
• Private heap per library instance (multiple isolated

copies of the same library allowed)

• Shared code between all instances

• Calls to the library delegate access to shared
buffers

• Maintaining ABIs can be a bit tricky!

39

Lessons Learned

40

Only testing with real code can tell you how useful your
ISA really is. Convincing a compiler it’s useful is a lot

harder than convincing yourself.

Software stack on GitHub now, hardware due new open-
source release Real Soon Now™

Further Reading
David Chisnall, Colin Rothwell, Brooks Davis, Robert N.M. Watson, Jonathan
Woodruff, Munraj Vadera, Simon W. Moore, Peter G. Neumann and Michael Roe.
Beyond the PDP-11: Processor support for a memory-safe C abstract
machine. Proceedings of the Fifteenth Edition of ASPLOS on Architectural
Support for Programming Languages and Operating Systems, ACM (2015).

Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W. Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert
Norton and Michael Roe. The CHERI capability model: revisiting RISC in an
age of risk. ISCA ’14: Proceeding of the 41st annual international symposium on
Computer architecture, IEEE Press (2014), 457–468.

http://chericpu.org
http://www.cl.cam.ac.uk/research/security/ctsrd/

Thanks to DARPA, AFRL, Google!
41

